Kettingwortels

Een uitdrukking zoals

    \[x=\sqrt{a+\sqrt{a+\sqrt{a+\sqrt{a+...}}}}\]

wordt een oneindige kettingwortel genoemd.

Als we beide leden kwadrateren komt er: 

    \[x^2=a+\sqrt{a+\sqrt{a+\sqrt{a+\sqrt{a+...}}}}\]

of nóg x^2=a+x. De positieve oplossing van deze vierkantsvergelijking is x=\frac{1}{2}(1+\sqrt{1+4a})

Stel hierin bijvoorbeeld a=1, dan bekomen we:

    \[\frac{1}{2}(1+\sqrt{5})=\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+...}}}}\]

In het bijzonder ontstaat er een natuurlijk getal indien 1+4a een volkomen kwadraat is. Een paar voorbeelden: 

2=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...}}}}

3=\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6+...}}}}

4=\sqrt{12+\sqrt{12+\sqrt{12+\sqrt{12+...}}}}