Symbolen

Wiskundige symbolen om een gelijkheid of een ongelijkheid aan te duiden werden pas na 1500 ingevoerd. Het = teken werd het eerst gebruikt in 1557 bij Robert Recorde (1510-1558), een Welshe wiskundige.

De symbolen < en > werden voor het eerst gebruikt in een boek van Thomas Harriot (1560-1621), een Engelse wiskundige, in 1631, ongeveer 10 jaar na zijn dood? Sommigen beweren dat de symbolen aan zijn uitgever werden toegeschreven.

Ruim 100 jaar later, in 1734, werden de symbolen \geq en \leq ingevoerd door de Franse wiskundige Pierre Bouguer (1698-1758).

 

Gebruik een goede notatie

Het ontbreken van een goede notatie kan de verdere ontwikkeling van een wiskundig begrip tegenhouden. Net zo goed kan een goede notatie  bij het oplossen van een probleem, dit probleem toegankelijker maken en ons naar een goede oplossingsmethode leiden. Het probleem wordt als het ware gecodeerd zodat het veel toegankelijker wordt.

Een voorbeeld:

 

Ik heb 4 kleinkinderen Mirthe (M), Tiebe (T), Joeke (J) en Nienke (N). Op hoeveel manieren kan ik 10 stukken van 2 \euro \ onder hen verdelen?

We kunnen beginnen met een paar voorbeelden:

    \[\begin{array}{c|c|c|c} M&T&J&N\\ \hline xx&xx&xxx&xxx\\ xxxxx&xxxxx&& \end{array}\]

  • Bij de eerste lijn ( xx|xx|xxx|xxx) krijgen Mirthe en Tiebe elk 2 Euro , terwijl Joeke en Nienke elk 3 Euro  krijgen. Op de tweede lijn (xxxxx|xxxxx||) krijgen Mirthe en Tiebe elk 5 Euro en Joeke en Nienke niets.
  • Dus met elke verdeling van de tien munten komt een rijtje van 10 x-en en 3 | en overeen. Dit lijkt een goede notatie voor een verdeling .
  • Omgekeerd komt met elke rij van 10 x-en en 3 | en een verdeling van de 10 stukken van 2 Euro  overeen. Met xxx|xxx|x|xxx geef ik Mirthe, Tiebe en Nienke elk 3 stukken van 2 Euro  en Joeke 1 stuk.
  • Er zijn dus evenveel verdelingen van die 10 muntstukken over mijn kleinkinderen als er dergelijke rijtjes kunnen gevormd worden.
  • Het aantal van dergelijke rijtjes is een herhalingspermutatie van 13 elementen waarvan er 10 van het soort x zijn en 3 van het soort |. Dus zijn er \dfrac{13!}{10!.3!}=260 mogelijke verdelingen.