Spiraal van Ulam

Je kan volgend rooster van natuurlijke getallen maken in de vorm van een spiraal:

De wiskundige Stanislaw Ulam kreeg in 1963 het idee om e priemgetallen hierbij aan te duiden 

Hij zag, tot zijn verbazing, dat de priemgetallen de neiging hebben om zich op diagonalen van de spiraal te bevinden. De diagonalen zijn ook zichtbaar wanneer er heel veel getallen in een spiraal worden geplaatst. Het opvallende is, dat priemgetallen zich meer op bepaalde diagonalen bevinden dan op andere. De reden hiervoor is alsnog onduidelijk.

Spiraal Van Fermat

 

 

Bovenstaande figuur is een spiraal. Een spiraal is een kromme die rond een bepaald punt draait en steeds dichter dit punt nadert of zich er steeds verder van verwijdert. Ze wordt gegenereerd, in poolcöordinaten, door r^2=a\theta.  De twee takken : 

In zijn manuscript Ad loos planos et solidus lisagoge ging    Fermat dieper in op het analytische werk van Descartes en hij bestudeerde verschillende belangrijke krommen, zoals de Fermat-spiraal hierboven (1636). Voor elke waarde van \theta , bestaan er positieve en negatieve waarden voor r, wat leidt tot een kromme die symmetrisch rond de oorsprong draait.