Opgave 40

Een convexe zeshoek is ingeschreven in een cirkel met straal r. Twee zijden van deze zeshoek hebben als lengte 7 eenheden , terwijl de vier overige als lengte 20 eenheden hebben. Bepaal de straal van de cirkel.

Antwoord

  • Wat de volgorde van de zijden is, steeds moet minstens aan één zijde met lengte 7 een zijde met lengte 20 aanliggend zijn. Noem de middelpuntshoek tegenover de zijde met lengte 20  eenheden 2a en de middelpuntshoek tegenover de zijde met lengte 7 eenheden 2b.
  • Door het apothema te trekken op de zijden van de zeshoek vinden we dat \sin a=\frac{10}{r} en \sin b=\frac{3,5}{3}.
  • De som van alle middelpuntshoeken is 360^\circ, dus 2*2b+4*2a=360^\circ. Hieruit volgt dat b+2a=90^\circ.
  • Dan geldt er dat \sin b=\cos 2a=1-2\sin^2 a
  • Volgens een vorig punt is dus 1-2\sin^2 a=\frac{3,5}{r}. Of

        \[1-2\Big(\frac{10}{r}\Big)^2=\frac{3,5}{r}\]

  • Dit geeft een vierkantsvergelijking: 2r^2-7r-400=0
  • De enige positieve oplossing van deze vergelijking is 16.
  • De straal is 16 eenheden lang.

Over goniometrie

Het woord goniometrie of trigonometrie komt van twee Griekse woorden: trigonon(driehoek) en metro(maat).

Zo’n 3000 jaar geleden kenden de oude Babyloniërs een vorm van goniometrie en van hen kwam het idee van 360^\circ. Ze gaven ons zestig minuten in een graad en zestig seconden in een minuut.

Ook de grieken gebruikten al ver gevorderde goniometrie. Euclides en Archimedes ontwikkelden stellingen, weliswaar meetkundig met goniometrische equivalenten. De eerste goniometrische tabel (Tōn en kuklōi eutheiōn (Of Lines Inside a Circle) is waarschijnlijk gemaakt door Hipparchus van Nicaea door sommigen de ‘vader van de goniometrie genoemd.

De tabel was een hulpmiddel bij het oplossen van driehoeken maakte gebruik van koorden en de formule

    \[\text{koorde}(\alpha)=2r \sin \frac{\alpha}{2}\]

De Indiase wiskundige Aryabhata ( 476-550 BC) ontwikkelde de verhoudingen van sinus  ( overstaande rechthoekzijde tot schuine zijde) en cosinus ( aanliggende rechthoekzijde tot schuine zijde). In zijn werk Saan ook de oudste bewaard gebleven sinustabellen.

In de zevende eeuw maakte de Indiase wiskunde Bhaskara een vrij nauwkeurige formule om de sinus van x ( in radialen) uit te rekenen zonder tabel:

    \[\sin x=\frac{16x(\pi-x)}{5\pi^2-4x(\pi-x)}\]

Deze ideeën kwamen via Perzië naar  het westen. Al-Khwarizmi maakte in de negende eeuw goniometrische tabellen voor sinus, cosinus en tangens. Een eeuw later gebruikten islamitische wiskundigen de volledige ‘bubbel van 6’ ( sinus, cosinus, tangens, secans, cosecans en cotangens) en zij hadden tabellen voor toenames met een kwart graad, die tot 8 decimalen nauwkeurig waren.

Nu kent de goniometrie vooral toepassingen in de landmeetkunde en de navigatie