Priemgetallen

De Poolse wiskundige W.Sierpinski (1882-1969) was eer gefascineerd door de priemgetallen en hun spreiding tussen de andere natuurlijke getallen. We vermelden twee mooie resultaten.

Men kan een rij van opeenvolgende natuurlijke getallen bepalen, zo lang als men wilt, die geen enkel priemgetal bevat. Zo kan men bijvoorbeeld 100 opeenvolgende getallen kiezen zonder dat er een priemgetal inzit.  Neem 101!+2,101!+3,…,101!+101. Dit zijn 100 opeenvolgende getallen en ze zijn geen van allen priem want ze zijn respectievelijk deelbaar door 2,3,…,101

Voor elke n kan men een priemgetal vinden met links en rechts ervan n niet-priemen:

  • Neem een priemgetal q groter dan n+1.
  • Bereken a=\prod_{j=1}^{q-2}(q^2-j^2).
  • q  is onderling ondeelbaar met a.
  • De stelling van Lejeune-Dirichlet over de rekenkundige rij zegt dat er een priemgetal p bestaat met p>q en p=ak+q.
  • Nu is q+j een deler van a en omdat p+j=ak+q+j ook een deler van p+j
  • Analoog is q-j een deler van p-j.
  • Dus zijn p-j en p+j niet priem en dit voor j=1,2,…,n

Neem n=2 en q respectievelijk de priemgetallen 5,7,11,13,…, dan kan je zo bewijzen dat er oneindig veel priemgetallen bestaan die geen deel uitmaken van een priemtweeling.

Dimensie

Rechthoeken, driehoeken, cirkels,… zijn lange tijd de meest bestudeerde meetkundige figuren geweest. In realiteit komen deze figuren echter zelden voor. Als we eens een luchtfoto bekijken van de kustlijn van een willekeurig continent, dan blijkt die lijn niet meer zo ‘glad’ te zijn dan bij een rechthoek. Er is hier spraken van een fractaal.

De naam fractaal werd ingevoerd door Benoit Mandelbrot, die heeft willen aantonen dat de ons omgevende natuur rijk is aan fractals.

We willen het hier vooral hebben over de dimensie van dergelijke objecten. Dit artikel is geschreven door Luca Pignatti, leerling van 6WEWIe2 aan het H.Drievuldigheidscollege in Leuven.

We zoeken een  alternatieve definitie  voor de dimensie van een object. Daarvoor voeren we  een onderzoek naar dimensies op objecten waarvan we de dimensie reeds kennen. Een 1-dimensioneel lijnstuk, een 2-dimensioneel oppervlak en een 3-dimensionele kubus. Wanneer je elk voorwerp met een factor vergroot of verkleint bekom je hetzelfde voorwerp maar met een verschillende afmeting. Deze afmeting zou je ook kunnen beschouwen als de massa van het voorwerp, ook al is dit niet helemaal juist, een lijnstuk heeft geen massa. Het is wel een goede manier om het te visualiseren. Probeer je voor te stellen dat de voorwerpen uit metaal gemaakt zijn, metalen draad, metaalplaat en massief metaal. Een voorbeeld: verkleinen met factor ½

dimensie 1, lengte ½ , massa ½

dimensie 2, lengte ½, massa 1/4

dimensie 3, lengte ½, massa 1/8 

We vinden dat wanneer de lengte gehalveerd wordt,  de massa van het voorwerp met diezelfde factor tot de macht van de dimensie verheven wordt. Dit geldt niet enkel voor factor ½ maar voor elk ander reëel, positief getal. zo krijgen we de formule

    \[s^d=m\]

Hierbij is s de vergrotingsfactor, m de massa na de transformatie en  d  de dimensie .

Dit verband kan ons helpen met zoeken naar de dimensies van bepaalde fractalen, zoals de driehoek van Sierpinski. De driehoek van Sierpiński is een fractaal die werd ontdekt door de Poolse wiskundige Wacław Sierpiński. Uit een gelijkzijdige driehoek wordt de driehoek verwijderd die gevormd wordt door de middens van de drie zijden. Vervolgens wordt deze procedure herhaald in elk van de drie overgebleven driehoeken.

We zien dat wanneer we de zijde van de driehoek met factor ½ verkleinen dat de massa (oppervlakte)  van het voorwerp er na tot \frac{1}{3} van de massa ervoor is. Wanneer we onze formule invullen voor s=1/2 en m=1/3 vinden we (1/2)D = (1/3). De dimensie zou dan gelijk moeten zijn aan \log_23\approx 1,58496.

Laten we even kijken naar de kromme van Koch:

We vinden s=1/3, m=1/4 en dus is de dimensie van de Kochkromme gelijk aan \log_34\approx 1,26186.

De dimensie van onze fractals is dus niet langer een natuurlijk getal, maar wel een breuk! Iets tussen dimensie 1 en dimensie 2. 

 

 

Sierpinski getallen

De Poolse wiskundige Waclaw Sierpinski (1882-1969) is vooral bekend van zijn driehoek. minder gekend zijn de zogenaamde Sierpinski getallen.

Een Sierpinski getal is een oneven getal k zodat k.2^n+1, voor geen enkele waarde van n een priemgetal is. Zo is 3 geen Sierpinski getal want 3.2^1+1=7 is priem. Ook 5 en 7 zijn geen Sierpinski getallen want 5.2^1+1=11 en 7.2^2+1=29 zijn allebei priemgetallen. In 1960 bewees Sierpiński dat er een oneindig aantal oneven gehele getallen k bestaan die geen priemgetallen opleveren.

Het is niet eenvoudig Sierpinski getallen te vinden. Het kleinste getal, waarvan we zeker weten dat het een Sierpinski getal is, is 78557. In 1962 bewees J.Selfridge dat 78557.2^n+1 nooit een priemgetal is. Het is getal 78557.2^n+1 is zelfs, voor elke waarde van n, deelbaar door 3,5,7,13,19,37 en 73.

Eén van de open problemen in de getaltheorie luidt: wat is het kleinste Sierpinski getal?  Men vermoedt dat dit 78557 moet zijn, maar er is daarvan nog steeds geen bewijs voor gegeven.