De gulden snede en de rij van Fibonacci

We kennen allemaal de gulden snede. Bij de gulden snede verhoudt het grootste van de twee delen van een lijnstuk zich tot het kleinste, zoals het gehele lijnstuk zich verhoudt tot het grootste. 

Maar er is ook een verband tussen \varphi en de rij van Fibonacci. Noteren we het n-de getal in deze rij door F(n).

  • Als we in bovenstaande uitdrukking \frac{a}{b} vervangen door \varphi, dan vinden we dat \varphi^2=\varphi+1.
  • Maar dat is \varphi^3=\varphi^2+\varphi=2\varphi+1.
  • Dus \varphi^4=2\varphi^2+\varphi=3\varphi+2.
  • Algemeen kan men dan stellen dat :

        \[\varphi^n=F(n)\varphi+F(n-1)\]

Fibonacci en de gulden snede

 

De rij van Fibonacci: 1,1,2,3,5,8,13,21,…  wordt gevormd door met twee enen te beginnen en dan is elke term de som van de vorige twee termen, dus:

    \[a_1=a_2=1 \text{ en } a_{n+2}=a_{n+1}+a_n\]

Vorm nu de rij s_n door twee opeenvolgende termen van de rij van Fibonacci te delen door elkaar:

    \[s_n=\frac{a_{n+1}}{a_n}\]

Een paar termen van die rij zijn : 1,2,\frac{3}{2},\frac{5}{3},\frac{8}{5},.... Wat zou de limiet van deze rij nu zijn?

We vermoeden dat deze limiet bestaat. Noteer de limiet met L.
Nu geldt s_n=\frac{a_{n+1}}{a_n}=\frac{a_n+a_{n-1}}{a_n}=1+\frac{1}{s_{n-1}}. Dus voldoet de limiet L aan de betrekking L=1+\frac{1}{L}. Dit geeft de vergelijking

    \[L^2-L-1=0\]

De positieve oplossing van deze vergelijking is \frac{1+\sqrt{5}}{2}=\varphi=1,6180 3398 8749 8948 482... , de gulden snede!