De rij van Padovan en het plastisch getal

Gelijkaardig aan de rij van Fibonacci, kunnen we ook de rij van Padovan definiëren, als de rij met p_1=p_2=1 en

    \[p_n=p_{n-2}+p_{n-3}\]



De rij van Padovan is vernoemd naar de schrijver en architect Richard Padovan die zijn ontdekking toegeschreef aan de Nederlandse architect Hans van der Laan . Hieronder zie je een spiraal van gelijkzijdige driehoeken waarvan de lengten der zijden gelijk zijn aan de de getallen uit de rij van Padovan.

Als we de rij bestuderen van de quotiënten van twee opeenvolgende getallen uit de rij van Padovan, bekomen we volgende rij : 2,1,\frac{3}{2},\frac{4}{3},\frac{5}{4},\frac{7}{5},\frac{9}{7},.... We vermoeden dat deze rij convergeert naar een limiet L. 
a_n=\frac{p_n}{p_{n-1}}=\frac{p_{n-2}}{p_{n-1}}+\frac{p_{n-3}}{p_{n-1}}=\frac{p_{n-2}}{p_{n-1}}+\frac{p_{n-3}}{p_{n-2}}\frac{p_{n-2}}{p_{n-1}}. Dus is a_n=\frac{1}{a_{n-1}}+\frac{1}{a_{n-2}}\frac{1}{a_{n-1}}. In de limiet wordt dit L=\frac{1}{L}+\frac{1}{L^2}. Bijgevolg voldoet de limiet L aan de betrekking

    \[L^3-L-1=0\]

Zo vinden we voor L de benaderende waarde 1,3247.

Dit getal noemen we het plastisch getal. Het plastisch getal heeft met de gulden snede nog meer eigenschappen gemeen, maar sommigen gaan nog verder en dichten aan deze getallen verregaande eigenschappen toe omtrent schoonheid.

 

 

 

Lineaire recursieve rijen

Een rij a_n voldoet aan een lineaire recurrentie  als

    \[c_ka_{n+k}+c_{k-1}a_{n-k-1}+\cdots+c_1a_{n+1}+c_0a_n=0\]

De rij a_n noemt men dan een lineaire recursieve rij.
De karakteristieke veelterm van bovenstaande lineaire recurrentie is de veelterm

    \[f(x)=c_kx^k+c_{k-1}x^{k-1}+\cdots c_1x+c_0\]

Als we f(x) in \mathbb{C} kunnen ontbinden als

    \[c_k(x-r_1)^{m_1}(x-r_2)^{m_2}\cdotsc_k(x-r_l)^{m_l}\]

dan voldoet a_n aan de lineaire recurrentie als en slechts als er functies g_i(x), met graad kleiner of gelijk aan m_i-1, bestaan zodat

    \[a_n=g_1(n)r_1^n+\cdots+g_l(n)r_l^n\]

Als m_1=m_2=\cdots=m_l=1, dan zijn alle functies g_i(x) constanten.

Enkele speciale gevallen:

  • Bij een rekenkundige rij is a_{n+1}=a_n+v met a_0=a. Dit is geen lineaire recurrentie. Maar nu is ook a_{n+2}=a_{n+1}+v. Aftrekken van de twee formules geeft : a_{n+2}-2a_{n+1}+a_n=0. Dits is wel een lineaire recurrentie met  karakteristieke veelterm x^2-2x+1=(x-1)^2. Bijgevolg is a_n=(An+B).1^n. Het is duidelijk dat B=a, de beginterm van de rij en A=v, het verschil van de rij. Zodoende is het algemeen voorschrift a_n=n.v+a voor n=0,1,...
  • Bij een meetkundige rij is a_{n+1}=a_n.q met a_0=a. Dit is een lineaire recurrentie met karakteristieke veelterm x-q. Bijgevolg is a_n=A.q^n . Uit a_0=a volgt dat A=a en dus is het algemeen voorschrift a_n=a.q^n voor n=0,1,...

Voorbeeld : a_0=1 en a_1=4 en elke ander term is het rekenkundig gemiddelde van de twee vorige termen. Een aantal termen van de rij: 1,4,\frac{5}{2},\frac{13}{4},.... Om de algemene term van de rij te bepalen, zoeken we eerst de karakteristieke veelterm van de lineaire recurrentie: 2a_{n+2}-a_{n+1}-a_n=0. Dan is f(x)=2x^2-x-1=2(x-1)(x+\frac{1}{2}. Bijgevolg is a_n=A1^n+B\Big(-\frac{1}{2}\Big)^n=A+B\Big(-\frac{1}{2}\Big)^n. Om A en B te bepalen gebruiken we dat a_0=1 en a_1=4 . Hieruit volgt dat A=3 en B=-2, zodat a_n=3-2\Big(-\frac{1}{2}\Big)^n