Straal ingeschreven cirkel

Zoek een verband tussen de zijden van een rechthoekige driehoek en de straal van de ingeschreven cirkel.

De stukken van de raaklijnen vanuit een punt aan de cirkel zijn even lang en bovendien is x = r.

Wanneer we a+b berekenen vinden we dat a+b=x+z+x+y=2r+c, dus geldt in een rechthoekige driehoek :

    \[a+b-c=2r\]

Kan je nu de oppervlakte van de  rechthoek ABCD berekenen?

Nootje 24

De zijden van een driehoek zijn 18,24 en 30. Vind de oppervlakte van de driehoek gevormd door het zwaartepunt en de middelpunten van om- en ingeschreven cirkel.

Antwoord

Nootje 18

Bereken de oppervlakte van een rechthoekige driehoek in functie van de bissectrice en zwaartelijn betrokken uit de rechte hoek.

Antwoord

Opgave 26


Geef alle rechthoekige driehoeken waarvan de zijden natuurlijke getallen zijn en waarvan de oppervlakte tweemaal de omtrek is

Antwoord