De kleine stelling van Fermat leert ons dat voor een priemgetal p geldt dat
of voor getallen a die onderling ondeelbaar zijn met p: .
De stelling van Fermat is niet omkeerbaar. Inderdaad is en . In de vijfde eeuw voor onze jaartelling wisten de Chinezen al dat uit p priem volgt dat . Zij waren ook overtuigd van het omgekeerde. Ook Leibniz was daarvan overtuigd. Slechts in 1819 vond F. Sarrus bovenvermeld tegenvoorbeeld.
We noemen 341 een pseudopriem t.o.v. de basis 2.
Een Carmichael getal is een getal p dat niet priem is en waar voor alle a die onderling ondeelbaar zijn met p, toch geldt dat . Zo is bijvoorbeeld 561 het kleinste Carmichael getal. De volgende Carmichael getallen zijn 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841 en 29341. Pas in 1994 werd bewezen dat er oneindig veel Carmichael getallen zijn.
De naam Carmichael getal komt van de Amerikaanse wiskundige Richard David Carmichael ( 1979-1967) die het bestaan ervan introduceerde in 1910. Een andere naam voor deze getallen is absolute pseudopriemen