Opgave 35

N is een natuurlijk getal. Een goede verdeling van N is een partitie van \{1,2,\cdots,N\} in twee gescheiden, niet lege deelverzamelingen S_1 en S_2, zo dat de som van de elementen van S_1 gelijk is aan het product van de elementen van S_2. Bewijs dat voor N\geq 5 er altijd een goede verdeling bestaat.

Spoiler

Nootje 27

 

 

 

Spoiler

Op welk cijfer eindigt…

Wat is de rest bij deling door 10 van het 2022ste getal in de rij  

    \[3,3^3,3^{3^3},...\]

  • De gegeven rij kan ook gegeven worden door middel van een recursief voorschrift: t_1=3 en t_{n+1}=3^{t_n}.

  • Berekenen we een paar termen van de rij: 3 , 27 , 7625597484987. We zien dat ze zeer snel toenemen in grootte, maar we hebben wel al 2 keer een 7 achteraan. Zou dat een patroon zijn?
  • Elke term is een viervoud plus 3, want t_n=(4 voud -1)^{t_{n-1}} en omdat elke term in de rij oneven is is t_n dus een 4voud min 1, of met anders geformuleerd : een drievoud plus 3.

  • Dan is t_{n+1}=3^{4v+3}=3^3.3^{4v}=27.81^v.
  • Werken we nu modulo 10: t_{n+1}\equiv 7.1^v\equiv 7.
  • Dus elke term van de rij eindigt op 7, dus ook de 2022ste term.

Nog 2 opgaven over priemgetallen

De som van twee tweelingpriemen, groter dan 3, is deelbaar door 12.

Antwoord

Veronderstel dat p een priemgetal is en dat allebei de oplossingen van x^2+px-444p=0 gehele getallen zijn, zoek dan de mogelijke waarden van p.

 

Antwoord