Nootje 33

Vind x-y als gegeven is dat x^4=y^4+24, x^2+y^2=6 en x+y=3.

Antwoord

  • Om de 2 onbekenden x en y uit te rekenen heb je eigenlijk maar 2 vergelijkingen nodig. Dan kan je ook x-y uitrekenen. Maar waarschijnlijk is dat wel niet de bedoeling.
  • Omdat x^4-y^4=(x-y)(x+y)(x^2+y^2), vinden we uit de eerste betrekking dat 24=(x-y)*3*6;
  • Hieruit volgt dan dat x-y=\frac{4}{3}.

Nootje 29

Gegeven is een veelterm waarvan de coëfficiënten natuurlijke getallen zijn. Hoe kan je met zo weinig mogelijk evaluaties met natuurlijke getallen( berekenen van een getalwaarde) de coëfficiënten bepalen? Probeer eerst eens als alle coëfficiënten kleiner zijn dan 10.

Spoiler

  • Noem de veelterm P(x).
  • Als alle coëfficiënten kleiner zijn dan 10, volstaat 1 evaluatie. Bereken P(10). 
  • Neem een voorbeeld als test: P(x)=x^3+4x+8 . Dan is P(10)=10^3+4*10+8=1048. In deze uitkomst kan je de coëfficiënten inderdaad aflezen.
  • Wat nu als de de bovengrens van 10 niet meer geldig is. Dan hebben we 2 evaluaties nodig. 
  • De eerste evaluatie dient om de bovengrens van de coëfficiënten te bepalen. Bereken P(1). Dan bestaat er een natuurlijk getal k zodat P(1)<10^k. Bijgevolg is elke coëfficiënt kleiner dan 10^k.
  • De tweede evaluatie is dan P(10^k).
  • Testje? Neem P(x)=12x^3+145x+88. dan is P(1)=245<10^3. Neem k=3 en bereken P(10^3). Dit geeft 12.000.145.088. Opgedeeld in vakjes van k=3 cijfers krijgen we de gevraagde coëfficiënten.

 

Opgave 36

Wanneer deelt een natuurlijk getal n de uitdrukking 10^k-1 voor een natuurlijke k?

Spoiler

  • Als n een veelvoud is van 2 of 5, dan is de enige mogelijkheid de triviale oplossing k=0.
  • Veronderstel dus verder dat n geen priemfactor 2 of 5 bevat.
  • Noteer met K(n) de kleinste, van 0 verschillende waarde van k, waarvoor n|(10^k-1).
  • Proberen we een aantal waarden uit:
    \begin{array}{c|c} n&K(n) \\ \hline \\ 3&1\\7&6\\9&1\\11&2 \end{array}
  • Stel nu dat n, geen priemfactor 2 of 5 bevat, en een deler is van 10^k-1, dan bestaat er een natuurlijk getal a zodat n.a=10^k-1.
  • Noteer de decimale schrijfwijze van a als a=a_110^{k-1}+\cdots+a_{k-1}10+a_k.
  • Dan is a_110^{k-1}+\cdots+a_{k-1}10+a_k=\frac{10^k}{n}-\frac{1}{n}.
  • Bij deling, van deze laatste vergelijking door 10^k vinden we:

        \[0,a_1\cdots a_{k-1}a_k=\frac{1}{n}-\frac{10^{-k}}{n}\]

  • Als we steeds maar opnieuw delen door 10^k en alle bekomen formules lid per lid bij elkaar optellen vinden we

        \[\frac{1}{n}=0,a_1\cdots a_{k-1}a_ka_1\cdots a_{k-1}a_k\cdots\]

  • Omgekeerd is het eenvoudig te zien dat, als \frac{1}{n} een decimale ontwikkeling zoals hierboven heeft, dat n een deler is van 10^k-1.
  • Besluit: Als n geen priemfactor 2 of 5 bevat, dan in K(n) gelijk aan de lengte  van de periode van \frac{1}{n}.
  • Natuurlijk is elk veelvoud van k ook een goede oplossing.

 

Opgave 35

N is een natuurlijk getal. Een goede verdeling van N is een partitie van \{1,2,\cdots,N\} in twee gescheiden, niet lege deelverzamelingen S_1 en S_2, zo dat de som van de elementen van S_1 gelijk is aan het product van de elementen van S_2. Bewijs dat voor N\geq 5 er altijd een goede verdeling bestaat.

Spoiler

  • Laten we eerst even op verkenning gaan en kijken of we een goede verdeling vinden voor 5,6 en 7.
  • Voor 5 vinden we S_1=\{3,5\} en S_2=\{1,2,4\}.
  • Voor 6 vinden we S_1=\{3,4,5\} en S_2=\{1,2,6\}.
  • Voor 7 vinden we S_1=\{2,4,5,7\} en S_2=\{1,3,6\}.
  • In deze voorbeelden vinden we S_21 van de vorm \{1,x,y\}. Proberen we eens of dit altijd kan! 
  • S_1 is het complement van S_2 dus we krijgen een goede verdeling als

        \[\frac{N(N+1)}{2}-1-x-y=xy\]

  • Uitgewerkt geeft dit (x+1)(y+1)=\frac{N(N+1)}{2}.
  • Als nu N\geq 5 en N even is , dan kunnen we voor x en y volgende oplossingen vinden:

        \[x=\frac{N}{2}-1 \text{ en } y=N\]

  • Als N echter oneven is, vinden we:

        \[x=\frac{N+1}{2}-1 \text{ en } y=N-1\]

  • We hebben dus een constructie bewijs gegeven van het gevraagde.

Nootje 27

 

 

 

Spoiler

  • We zoeken de grootste waarde van een natuurlijk getal x waarvoor \sqrt{x^2-2021} een natuurlijk getal is. Noem dit getal n.
  • Dan geldt: x^2-2021=n^2 of x^2-n^2=2021
  • 2021 heeft 4 delers: 1,43,47 en 2021.
  • Dus is (x-n)(x+n)=1.2021 of (x-n)(x+n)=43.47
  • Uit de eerste gelijkheid volgt dat x-n=1 en x+n=2021. Bijgevolg is x=1011 en n=1010.
  • Uit de tweede gelijkheid volgt dat x-n=43 en x+n=47. Bijgevolg is x=45 en n=2.
  • De grootst mogelijk waarde van x is dus 1011.