Nootje 53

De eerste prijs, in Euro’s, bij een loterij is een getal van 5 cijfers. Nina en 3 van haar vrienden winnen de prijs en verdelen die in gelijke delen onder elkaar. Nina merkt dat haar deel dezelfde cijfers heeft als de totale prijs, maar dan in omgekeerde volgorde. Hoe groot is Nina’s deel?`

Antwoord

  • stel de totale prijs door abcde.
  • er geldt dan dat abcde= 4.edcba.
  • Omdat 4e<10 moet e=1 of e=2.Omdat 4a eindigt op cijfer e, moet e dus even zijn en dus is e=2
  • nu e=2, eindigt 4a op een 2 en dus is a=3 of 8.
  •  We weten dat e=2,718 dus is a\geq 8 en dus is a=8.
  • We hebben dus al dat 8bcd2=4. 2dcb8
  • Volledig uitgeschreven: 80000+1000b+100c+10d+2=80000+4000d+400c+40b+32
  • Dit wordt dan: 960b=300c+3990d+30 of na vereenvoudiging 32b=10c+133d+1
  • Kijkend neer even en oneven vinden we dat 133d+1 even moet zijn en dus id d oneven. Anderzijds is 32 b > 133d, dus zeker 32b>128d of b>4d. gecombineerd met het oneven zijn van d, volgt hieruit dat d=1.
  • De vergelijking,g twee stappen terug wordt dan 32b=10c+134.
  • 32b moet dus op een 4 eindigen en omdat b>4, weten we dat b=7
  • We bekomen tenslotte 224=10c+134 of c=9
  • Het deel van Nina is dus 21978 Euro

Nootje 45

Zoek een getal van 4 cijfers, waarbij elk cijfer kleiner is dan 7. Het getal is een kwadraat en als je bij elk cijfer 3 optelt bekom je opnieuw  een getal dat een kwadraat is.

Antwoord

  • Noteer met x het gezochte getal. 
  • Dan kan je schrijven dat x=p^2 met p tussen 31 en 100.
  • Elk cijfer mer 3 vermeerderen betekent dat je 3333 optelt bij x. 
  • Deze uitkomst is weer het kwadraat van een getal: Noteer dit als q^2.
  • Dan is q^2-p^2=3333 of (q-p)(q+p)=3333
  • Nu kan je 3333 schrijven als 1.3333=3.1111=11.303=33.101.
  • Zo bekom je bvb het stelsel q+p=101 en q-p=33, waaruit volgt dat p=34 
  • De andere mogelijkheden leveren geen oplossing op voor p tussen 32 en 100.
  • Het gezocht getal is dus 34^2=1156

Opgave 39

Bewijs dat geen enkel getal van de vorm

    \[3^m+3^n+1\]

met m en n strikt positieve gehele getallen, een volkomen kwadraat is.

Antwoord

  • Veronderstel dat er toch een natuurlijk getal k bestaat zodat

        \[3^3+3^n+2=k^2\]

  • Dan is 3^m+3^n=(k+1)(k-1). Omdat het linkerlid even is en omdat k-1 en k+1 dezelfde pariteit hebben, zijn k-1 en k+1 opeenvolgende even getallen.
  • Dit betekent ook dat ofwel k-1 ofwel k+1 een viervoud is. Het rechterlid (k-1)(k+1) is dus deelbaar door 8.
  • Bij deling door 8 zijn de resten van machten van 3 ofwel 1 ofwel 3. De som 3^m+3^n is dus modulo 8, gelijk aan 2,4 of 6 en dus zeker niet deelbaar door 8.
  • Bijgevolg kan 3^m+3^n+1 nooit een volkomen kwadraat zijn.

Nootje 43

Zoek de oppervlakte van de getekende cirkel.

 

Antwoord

  • Noem de rechthoekzijden van de rechthoekige driehoeken a en b.
  • Dan is a*b=2*24=48.
  • De totale oppervlakte van het grote vierkant is 100 plus vierkeer de rechthoekige driehoek met oppervlakte 24, dus 196. Bijgevolg is de zijde van het grote vierkant gelijk aan 16. Dus is a+b=16
  • Uit de twee betrekkingen met a en b vinden we dan dat a=8 en b=6.
  • Nu weten we dat de oppervlakte van een rechthoekige driehoek gelijk is aan de straal van de ingeschreven cirkel vermenigvuldigd met de halve omtrek van de driehoek. Bijgevolg is de straal gelijk aan 2.
  • De oppervlakte van de getekende cirkel is 4\pi.