Spelen met kralen

Hoeveel snoeren kan je maken met 3 rode en 5 witte kralen? Als je het snoer draait (cyclisch) of omkeert ( spiegeling), krijg je geen ander snoer.

We stellen een snoer voor als een combinatie van 3 R-en en 5 W’s. We weten dat WRRRWWWW en RRRWWWWW dezelfde ketting voorstelt. We kunnen er dus steeds voor zorgen dat we eindigen met een R. Maar ook RRWRWWWW en RWRRWWWW stellen hetzelfde snoer voor, want als je de laatste 4 W’s vooraan zet, zijn de twee snoeren elkaars spiegelbeeld.

Focussen we ons even op de rode kralen en bekijken we een snoer als
…R…R…R, dan rest ons de 5 witte kralen te verdelen over de drie aangegeven vakjes (na de laatste R is er geen vakje meer wegens het cyclisch zijn van het snoer. We coderen het snoer door de aantallen witte kralen in die vakjes. De combinatie WRRRWWWW en RRRWWWWW of WWWWWRRR stellen we dan voor als 500 en de gelijke snoeren RRWRWWWW en RWRRWWWW worden dan 401 en 410. We kiezen voor  die getallencombinatie die een niet -stijgende rij is.

Welke mogelijkheden houden we uiteindelijk over?

RRRWWWWW=500
RRWRWWWW=401=410
RRWWRWWW=302=320
WRWRWWWR=113=311
WRWWRWWR=122=221

En dus is het aantal snoeren gelijk aan het aantal partities van 5 in hoogstens 3 delen, dit is het aantal manieren om 5 te schrijven als de som van hoogstens 3 postieve getallen. Kunnen we dit veralgemenen?  3 rode en n witte kralen? Lees hierover meer in volgens artikel.

Partities

Al eeuwenlang proberen de knapste wiskundekoppen grip te krijgen op de zogeheten partitiefunctie. Deze functie geeft aan op hoeveel manieren een aantal knikkers kan worden opgedeeld in groepjes. Zo kun je 5 knikkers bijvoorbeeld verdelen in vier groepjes: één groepje van 2 en drie groepjes van 1. Als som kun je dit schrijven als 5 = 2 + 1 + 1 + 1. Een andere partitie is 5 = 3 + 2 (twee groepjes). Ook 5 = 1 + 1 + 1 + 1 + 1 (vijf groepjes) en 5 = 5 (één groepje) zijn partities. In totaal zijn er 7 partities van 5. We noteren dat als p(5) = 7.

partitie

In het algemeen geven we het aantal partities van n aan met p(n). De rij partitiegetallen is de rij p(1), p(2), p(3), p(4), p(5) enzovoorts. Die rij ziet er zo uit: 1, 2, 3, 5, 7, 11, 15, 22, ….

De getallen in die rij worden al snel ongelofelijk groot. Zo is p(20) = 627 en p(100) is al meer dan 190 miljoen.

Grote namen als Euler en Ramanujan hebben diepe inzichten verkregen in de theorie van partities. Hoewel zij met hun berekeningen veel vragen konden beantwoorden, riepen hun berekeningen uiteindelijk nog meer vragen op, waarop ook zij het antwoord schuldig moesten blijven.

Wiskundige Ken Ono heeft met een aantal collega’s nieuwe grote vorderingen gemaakt op het gebied van partities. Het team onder leiding van Ono wist te bewijzen dat de partitiegetallen zich in zekere zin gedragen als fractals, een resultaat dat niemand eerder voor mogelijk had gehouden. Zij hebben deelbaarheidseigenschappen van partities ontrafeld en een theorie ontwikkeld die de ‘oneindig herhalende’ structuur verklaart. Bovendien hebben ze de eerste eindige formule opgesteld om partitiegetallen te berekenen.

“We hebben bewezen dat partitiegetallen een ‘fractale structuur’ hebben voor elk priemgetal. Deze getallen zijn ‘zelfherhalend’ in a shocking way”, aldus Ono. “Met onze methode hebben we een antwoord gevonden op diverse vragen die tot nu toe nog open stonden.” Ongetwijfeld zullen de nieuwe resultaten leiden tot veranderingen in hoe wiskundigen partities bestuderen.

ono