Nootje 36

Vind alle niet complexe oplossingen van

    \[(2x+1)(3x+1)(5x+1)(30x+1)=10\]

Antwoord

  • Alles uitrekenen geeft een vierdegraadsvergelijking, die waarschijnlijk niet op te lossen is.
  • We gaan de factoren in het linkerlid twee per twee uitrekenen: de eerst met de laatste en de twee middelsten.
  • De opgave wordt dan:  (15x^2+8x+1)(60x^2+32x+1)=10.
  • We merken op dat de twee eerste termen van de tweede factor het viervoud zijn van de eerste twee termen van de eerste factor. Stel 15x^2+8x=y
  • We krijgen dan (y+1)(4y+1)=10 of na uitwerken 4y^2+5y-9=0.
  • Deze vierkantsvergelijking heeft als oplossingen 1 en -2,25.
  • Vervangen we y terug dan verkrijgen we twee vergelijkingen van de tweede graad. De eerste 15x^2+8x-1=0 geeft als oplossingen \frac{-4\pm \sqrt{31}}{15}.
  • De tweede vergelijking wordt 15x^2+8x+2,25=0 en deze heeft geen reële oplossingen.
  • De enige niet complexe oplossingen zijn dus

        \[\frac{-4\pm \sqrt{31}}{15}\]

Gebruikmaken van de symmetrie

Soms kan je, door gebruik te maken van de  symmetrie  in de tekening of de symmetrie van de gegevens, de opgave aanzienlijk vereenvoudigen.

Een voorbeeld: Los op in \mathbb{R}:

    \[(x+2013)(x+2014)(x+2020)(x+2021)=44\]

  • Dit is een vierdegraads vergelijking. Hiervoor kennen we geen algemene oplossingsmethode.
  • Dus: haakjes uitwerken en dan ofwel proberen te ontbinden in factoren ofwel de regel van Horner toepassen. Maar dit is niet aantrekkelijk want de getallen in de opgave zijn nogal groot.
  •  De getallen 2013,2014,2020 en 2021 liggen wel symmetrisch rond 2017!
  •  We vervangen x+2017 door een nieuwe variabele t. De opgave wordt nu:

        \[(t-4)(t-3)(t+3)(t+4)=44\]

    .

  • Dit kan je netjes uitrekenen tot:

        \[(t^2-16)(t^2-9)=44\]

  • Verder uitrekenen geeft: t^4-25t+100=0. Hieruit volgt dat t^2=20 of t^2=5.
  • De 4 oplossingen voor t zijn dan: \pm \sqrt{5} en \pm \sqrt{20}. En dus moet \newline x=-2017 \pm \sqrt{5} of x=-2017 \pm \sqrt{20}.