Opgave 23

Hoeveel kwadraten komen er voor in de eerste duizend termen van de rij x_n=9n+7?

Antwoord

  • n=1 en n=2 leveren onmiddellijk kwadraten op, maar daarna duurt het precies wel even voor je terug een kwadraat krijgt. Zijn er nog wel?
  • De getallen x_n moeten tot de restklasse 7 modulo 9 behoren en een kwadraat zijn. Opdat x_n=m ^2 is het nodig en voldoende dat m^2 \equiv 7 \text{ mod } 9.
  • Het is niet moeilijk de verchillende restklassen mod 9 op te schrijven voor m^2:
    \begin{array}{c|c|c|c|c|c|c|c|c|c} m^2&0^2&1^2&2^2&3^2&4^2&5^2&6^2&7^2&8^2\\ \hline \text{ mod }9&0&1&4&0&7&7&0&4&1 \end{array}
  • Dus moet m \equiv 4 \text{ mod }9 of m \equiv 5 \text{ mod }9.
  • In het eerste geval is 9n+7=(9t+4)^2 of n=9t^2+8t+1. Als n \leq 1000, dan moet 0\leq t\leq 10. Dit levert ons al 11 oplossingen.
  • In het tweede geval  moet  9n+7=(9t+5)^2 of n=9t^2+10t+2. Als n \leq 1000, dan moet 0\leq t\leq 9. Dit geeft ons al 10 oplossingen.
  • In totaal heb je dus 21 termen in de rij die een volkomen kwadraat zijn.

Opgave 21

Maak met de cijfers 3,4,5,6,7,8 en 9 een getal X van 4 cijfers en een getal Y van 3 cijfers zodat het product X.Y zo groot mogelijk is.

Antwoord
  • We schrijven X en Y in hun tientallige notatie: X=a.10^3+b.10^2+c.10+d en Y=e.10^2+f.10+g.
  • Dan is
    X.Y= ae 10^5+(af+be).10^4+(ce+bf+ag).10^3+(bg+cf+de).10^2+(cg+df).10+dg.
  • Om X.Y maximaal te maken kiezen we ae zo groot mogelijk. Dit kan op 2 manieren.
  • Neem a=9 en e=8. Dan is de coëfficiënt van 10^4 gelijk aan 9f+8b en die wordt maximaal voor f=7 en b=6. De coëfficiënt van 10^3 is dan 8c+42+9g en die wordt zo groot mogelijk voor c=4 en g=5. Blijft over d=3. Dan is X=9643 en Y=875 en X.Y=8437625.
  • Als a=8 en e=9. Dan is de coëfficiënt van 10^4 gelijk aan 8f+9b en die wordt maximaal voor f=6 en b=7. De coëfficiënt van 10^3 is dan 9c+42+8g en die wordt zo groot mogelijk voor c=5 en g=4. ook hiet volgt dat d=3. Dan is X=8753 en Y=964 en X.Y=8437892.
  • Bijgevolg moet X=8753 en Y=964.

Opgave 20

AB is een koorde en P een willekeurig punt van een gegeven cirkel. Q is de loodrechte projectie van P op AB en R en S zijn de loodrechte projecties van P op de raaklijnen aan de cirkel in A en B. Bewijs dat PQ het meetkundig gemiddelde is van PR en PS.

Antwoord

  • Maken we eerst een tekening:
  • We proberen aan te tonen dat de driehoeken PRQ en PQS gelijkvormig zijn, want dan is \dfrac{PR}{PQ}=\dfrac{PQ}{PS} en hieruit volgt het gestelde.
  • De vierhoeken PRAQ en PQSB zijn koordenvierhoeken omdat twee overstaande hoeken recht zijn.
  • In de eerste koordenvierhoek is \widehat{PRQ}=\widehat{PAQ}  omdat in een koordenvierhoek de hoek tussen een zijde en de diagonaal gelijk is aan de hoek gevormd door de overstaande zijde en de andere diagonaal. Daarom is ook \widehat{PQS}=\widehat{PBS}.
  • Maar de hoeken \widehat{PAQ} en \widehat{PBS} zijn gelijk als hoeken op eenzelfde boog in de gegeven cirkel. Bijgevolg is \widehat{PRQ}=\widehat{PQS}.
  • Via een analoge redenering is ook \widehat{PQR}=\widehat{PSQ} en dus zijn de driehoeken PRQ en PQS gelijkvormig, zoals gevraagd.

Opgave 16

Voor 3 positieve getallen a,b en c  geldt:

    \[\frac{9}{2(a+b+c)}\leq \frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\leq \frac{1}{2}\Big(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\Big)\]

Antwoord

  • In de eerste ongelijkheid stellen we a+b=x, b+c=y en a+c=z , dan wordt de opgave herschreven als \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z} of (x+y+z)\Big( \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\Big )\geq 9.
  • We werken de haakjes uit en vinden: 3+\Big( \frac{x}{y}+\frac{y}{x}\Big)+\Big( \frac{x}{z}+\frac{z}{x}\Big)+\Big( \frac{y}{z}+\frac{z}{y}\Big) \geq 9.
  • Uit de ongelijkheid over het rekenkundig en meetkundig gemiddelde vinden we dat \frac{1}{2}\Big( \frac{x}{y}+\frac{y}{x}\Big) \geq \sqrtç \frac{x}{y}\frac{y}{x}=1, dus het linkerlid uit vorig punt is groter of gelijk aan 3+2+2+2=9 wat moest bewezen worden.
  • Voor het tweede deel van de ongelijkheid gebruiken we de ongelijkheid over het harmonisch en meetkundig gemiddelde: \frac{1}{a}+\frac{1}{b} \geq \frac{2}{\sqrt{ab}}. Volgens de ongelijkheid over het rekenkundig en meetkundig gemiddelde is bovendien \frac{2}{\sqrt{ab}} \geq \frac{4}{a+b}.
  • Pas dit nu toe op de drie termen van het linkerlid van de gevraagde ongelijkheid en het bewijs is klaar.

Opgave 14

Op de zijden van een rechthoekige driehoek ABC tekent men twee vierkanten: BGFC en AEDC. De rechten AG en BE snijden elkaar in I. Verder is H het snijpunt van AG met BC en J het snijpunt van BE met AC. Bewijs dat de oppervlakte van ABI gelijk is aan de oppervlakte van IHJC.

Antwoord

  • We maken eerst een tekening
  • We kunnen beter bewijzen dat de oppervlakte van de driehoeken ABH en BJC dezelfde zijn door bij de opgave de oppervlakte van BIH toe te voegen aan beide delen.
  • Dus moet |BH|.|AC|=|JC|.|BC| of \dfrac{|AC|}{|BC|}=\dfrac{|JC|}{|BH|}.
  • Nu zijn de driehoeken ACH en BGH gelijkvormig (HH= rechte hoek en overstaande hoeken), dus geldt \dfrac{|AC|}{|BC|}=\dfrac{|HC|}{|BH|}. Bijgevolg rest ons te bewijzen dat |JC|=|HC|.
  • Ook driehoeken BJC en BED zijn gelijkvormig ( HH= gemeenschappelijke hoek en rechte hoek), dus is \dfrac{|JC|}{|ED|}=\dfrac{|BC|}{|BD|} of |JC|.|BD|=|BC|.|ED|. Bijgevolg is |JC|.(|BC|+|AC|)=|BC|.|AC|.
  • Uit de gelijkvormigheid van de driehoeken AHC en AGF volgt op een analoge wijze dat |HC|.(|BC|+|AC|)=|BC|.|AC|.
  • Uit de twee laatste  formules volgt dan inderdaad dat |JC|=|HC|, net wat we wilden bewijzen.