Een touw rond de aarde

Neem een touw dat strak gespannen is rond een voetbal. Hoeveel langer moet ik dat touw maken om het 10 cm boven het oppervlak van de voetbal te laten lopen? Span vervolgens een touw om de evenaar. Dat zou 40000 km lang zijn. Hoeveel langer moet dit touw zijn om het rondom 10 cm te laten lopen?

Eenvoudige wiskunde kan ons helpen om onze intuïtie te overstijgen. De meesten onder ons denken inderdaad dat de oplossing bij het touw rond de evenaar veel langer is dan bij de voetbal. Mis!

Als R de straal is van de bal dan is de lengte van ons touw 2\pi R en na de vergroting 2\pi(R+0,10) meter. Hieruit blijkt dat het verschil 2\pi \times 0,10 meter is, ongeacht de straal van de voetbal of aarde. Bij benadering is dat 62,83 cm.

Dit vraagstuk komt uit een werk van William Whiston, een Engelse wiskundige en theoloog(1667 – 1752), voor zijn studenten schreef: De elementen van Euclides (1702). Hij was een leerling van Newton en volgde hem op als professor aan de universiteit van Cambridge. In 1710 werd  hij  er ontslagen wegens  zijn onorthodoxe  religieuze inzichten. Hij  vond het, onder andere,  een belediging van God, om te geloven in het  vuur  van  de hel.

Nootje 8

Stel de aarde voor als een gladde bol en span om die gladde aarde een touw  over de evenaar. De lengte van dat touw is ongeveer 40.000 km.
Maar stel je nu eens voor, dat we dat touw zouden doorknippen en er één meter tussen zouden knopen. We zouden het dan overal kunnen optillen tot het weer een cirkel zou vormen concentrisch met de evenaar.  Zou er dan een vlieg onder door kunnen?

Antwoord

  • De lengte van het touw is de omtrek van de cirkel en die wordt gegeven door O=2\pi R, met R de aardstraal.
  • Noteer x, de lengte waarmee de straal toeneemt als je de omtrek met 1 meter zou vermeerderen. Dan geldt

        \[2\pi(R+x)=2\pi R+1\]

  • Het uitwerken van deze vergelijking geeft

        \[x=\frac{1}{2\pi}\approx 0,16 m\]

  • Dus ongeveer 16 cm. Daar kan dus zeker een vlieg onder!
  • De uitkomst is onafhankelijk van de straal van de aarde. Je kan dus om het even welke cirkel gebruiken.