Wanneer Euclides 23 eeuwen geleden zijn meetkunde in systematische gedaante bracht, had hij zich nooit kunnen inbeelden hoeveel invloed deze later zou hebben. De Euclidische meetkunde is uitermate geschikt om de wereld rondom ons te beschrijven. In de wetenschap voor 1800 heeft men altijd gedacht dat de Euclidische meetkunde het enige meetkundig systeem was.
Onder de axioma’s die Euclides aan de basis van zijn systeem legde, was er één, met name het parallellenpostulaat, dat al vlug in vraag werd gesteld. Men achtte dit axioma van een andere aard als de overige vier en men twijfelde zelfs aan de noodzakelijkheid ervan, omdat het afhankelijk van of een gevolg van de andere axioma’s zou zijn. Gedurende meer dan 2000 jaar hebben beroemde wiskundigen getracht het parallellenpostulaat te bewijzen.
Vanaf de tweede helft van de achttiende eeuw begon men te denken dat men het parallellenpostulaat of elk equivalent postulaat, moest toelaten zonder bewijs. Uiteindelijk leidde dit tot de ontdekking van nieuwe meetkundige systemen. De eersten die hiertoe in staat zijn geweest waren Gauss, Bolyai en Nicolai Ivanovitch Lobatschevsky ( 1792-1856).
Op 23 februari 1826 geeft Lobatschevsky, voor de faculteit wiskunde en natuurkunde van de universiteit van Kazan, een lezing onder de naam Imaginaire meetkunde . Hier zet hij zijn nieuwe ideeën duidelijk naar voor. De essentie van het ongepubliceerde artikel wordt later toegevoegd aan zijn werk De elementen van de meetkunde . Lobatschevsky ondervindt zware tegenwerking en kritiek. Hij herziet zijn werk in een nieuw boek De nieuwe elementen van de meetkunde. In 1840 verschijnt nog een werk van hem over zijn bedenkingen, namelijk
In deze boeken vindt men een nieuwe meetkunde: de hyperbolische meetkunde. Als men het parallellepostulaat ( door elk punt P gaat er juist 1 rechte die een gegeven rechte a niet snijdt) niet opneemt, dan onderscheidt men twee typen niet-euclidische meetkunde: de hyperbolische meetkunde waar en oneindig veel rechten bestaan door P die a niet snijden en de elliptische meetkunde waar er geen rechte bestaat met die eigenschap.
Om deze meetkunde te visualiseren kan men gebruik maken van het model van Beltrami-Klein of van de modellen van Poincaré.