Sangaku 4

Antwoord

  • De groene oppervlakte is gelijk aan de rode oppervlakte.
  • We duiden volgende gebieden aan en noteren de schuine zijde van de gele rechthoekige driehoek a en de rechthoekszijden b en c:
  • Te bewijzen is dat I + V = III
  • De stellig van Pythagoras zegt: a^2=b^2+c^2.
  • Na deling door 8 en vermenigvuldiging met \pi geeft dit:

        \[\frac{1}{2}\pi \Big( \frac{a}{2} \Big)^2=\frac{1}{2}\pi \Big( \frac{b}{2} \Big)^2+\frac{1}{2}\pi \Big( \frac{c}{2} \Big)^2\]

  • Vertaald naar oppervlaktes van halve cirkels geeft dit : II + III + IV = I +II +IV +V of na vereenvoudiging: I + V = III
  • Deze figuur noemt men ook wel eens de maantjes van Hippocrates. Ze wordt toegeschreven aan de Griekse wiskundige Hippocrates van Chios (rond 430 voor Christus).