Bewijs dat er tussen elke 9 getallen er twee zijn, een a en een b, waarvoor
Verdeel je meer dan n duiven over n hokken, dan bevat minstens één hok minstens 2 van die duiven. Over dit duivenhok principe hebben we het gehad op een andere pagina van deze website. Het is niet altijd even gemakkelijk om de juiste ‘hokken’ te kiezen om alzo het principe te kunnen toepassen. Volgende opgaven lijken op elkaar, maar toch is de keuze van de ‘hokken’ totaal anders.
Voor de eerste vraag neem je 50 paar opeenvolgende koppels: (1,2),(3,4),…,(99,100). Vermits er 51 getallen gekozen worden, moet er daartussen dus zeker een paar (k,k+1) zitten. Als k en k+1 een zelfde priemdeler p zouden hebben zou p ook een deler zijn van (k+1)-k=1 en dat kan niet. Dus k en k+1 hebben geen gemeenschappelijke priemdeler.
Voor het tweede probleem neem je de 50 oneven getallen 1,3,5,…,99. Voor elk van die getallen vorm je een ‘hok’ met daarin het oneven getal en alle producten ervan met machten van 2. Zo bevat het eerste hok de elementen 1,2,4,8,16,32,64 en het tweede hok de elementen 3,6,12,24,48,96. Volgens het duivenhok principe moeten er tussen de 51 gekozen getallen er zeker twee zijn die in hetzelfde hok zitten. Die twee getallen zijn dan van de vorm en
met k een oneven getal. Het is duidelijk dat het ene getal het andere deelt.
Als je 5 ballen moet verdelen over 4 dozen, dan zal er een doos zijn met minstens 2 ballen. Immers de eerste 4 ballen kan je nog over de 4 dozen verdelen, maar voor het 5 de balletje is er geen doos meer over. Algemeen: verdeel je meer dan n objecten over n laden, dan bevat minstens één lade minstens 2 van die objecten. Dit eenvoudig principe werd voor het eerst expliciet gebruikt door Dirichlet (1805 – 1859) en wordt daarom ook het ladenprincipe of duivenhokprincipe van Dirichlet genoemd. Het principe kan in een nog algemenere vorm gegoten worden: Als je ( met
en
) objecten verdeelt over
laden, dan is er minstens \’e\’en lade met minstens
objecten.
Een voorbeeld: