Dames in een kaartspel

Schud een spel kaarten goed. Hoeveel kaarten van de top , gemiddeld genomen, kom je de eerste dame tegen?

  • We weten dat er 4 dames in het spel zijn. 
  • Wat ook de volgorde van de kaarten mag zijn, de dames verdelen het pak kaarten in 5 groepen: de kaarten voor de eerste dame, de kaarten tussen de eerste en tweede dame, enzovoort.
  • Het aantal kaarten in elk van die groepen varieert van 0 tot en met 48.
  • Noteer met X_i het aantal kaarten in de i-de groep. Dan geldt:

        \[0 \leq X_i \leq 48\]

     

        \[X_1+X_2+X_3+X_4+X_5=48\]

  • Elke X_i is een kansvariabele en omdat het pak kaarten goed geschud is, zal de kansverdeling van elke X_i dezelfde zijn.
  • Maar dan is 48=E(48)=E(X_1+X_2+X_3+X_4+X_5)=5E(X_1).
  • Bijgevolg is

        \[E(X_1)=\frac{48}{5}=9,6\]

  • Het verwacht aantal kaarten voor de eerste dame is dus gelijk aan 9,6.