De problemen die we nu zullen bestuderen gaan over processen die zich in een aantal toestanden kunnen bevinden. Laten we voor een gegeven probleem die toestanden even noemen. De overgang van de ene toestand naar de andere toestand is eenduidig vastgelegd door een aantal spelregels. Uiteindelijk is de vraag of het mogelijk is van toestand naar een eindtoestand te gaan door de regels te gebruiken. Een strategie om aan te tonen dat dit onmogelijk is, is gebruik te maken van een functie f die gedefinieerd is op de verschillende toestanden van het probleem en die bij de overgang van de ene toestand naar de andere niet van waarde verandert. De functie blijft invariant gedurende het hele proces. Als uiteindelijk blijkt dat kunnen we besluiten dat het onmogelijk is om van de begintoestand naar de eindtoestand te komen door gebruik te maken van de spelregels.
Een voorbeeld:
Een draak heeft 100 hoofden. Een ridder kan er 15,17,20 of 5 afhakken. maar als hij dat doet, dan groeien er onmiddellijk 24,2,14 of 17 nieuwe hoofden bij. Als alle hoofden er af zijn dan is de draad dood. Kan de ridder de draak doden?
Definieer de functie die het aantal hoofden berekent modulo 3. Dan is . Als de ridder 15 hoofden afhakt, dan komen er 24 bij, dus . De andere gevallen geven ons: , en . Het aantal hoofden dat verdwijnt of er bij komt is steeds een veelvoud van 3, dus verandert het aantal hoofden, modulo 3 niet. Met andere woorden is invariant. Hieruit volgt dat Maar als de draak dood is, zijn alle hoofden er af en zou . De draak kan dus niet verslagen worden.