Opgave 11

E,F en G zijn de raakpunten van de ingeschreven cirkel aan de zijden van driehoek ABC. Bewijs dat AF,BG en CE door één punt gaan.

Antwoord

  • F verdeelt de zijde a in |CF| =r\cot \frac{C}{2} en |FB|=r\cot \frac{B}{2}. Hierbij is r de straal van de ingeschreven cirkel en zijn CD en BD de bissectrices van de hoeken C en B.
  • Analoog geldt: G verdeelt de zijde b in |CG| =r\cot \frac{C}{2} en |AG|=r\cot \frac{A}{2} en E verdeelt de zijde c in |AE| =r\cot \frac{A}{2} en |EB|=r\cot \frac{B}{2}.
  • Dan is \dfrac{|AE|}{|EB|}.\dfrac{|BF|}{|FC|}.\dfrac{|CG|}{|GA|}=1.
  • Volgens de stelling van Ceva zijn de hoektransversalen AF,BG en CE dan concurrent.

Hoektransversalen in een driehoek

Neem een driehoek ABC. Een rechte l door een hoekpunt A van de driehoek heet hoektransversaal  of ceviaan van A. We onderzoeken onder welke voorwaarden de hoektransversalen van A,B en C door één punt gaan.

  1. Voor een willekeurig punt P op een hoektransversaal beschouwen we de verhouding van de afstanden tot de twee zijden.
    Omdat \dfrac{P_1R_1|}{|P_1Q_1|}=\dfrac{P_2R_2|}{|P_2Q_2|}, is deze verhouding constant. Noem deze constante v_1 Bij elke transversaal hoort een dergelijke constante. Bereken ze met de klok mee. Nu geldt: De 3 hoektransversalen zijn concurrent als en slechts als v_1v_2v_3=1. Zo geldt bijvoorbeeld voor de binnenbissectrices van een driehoek dat v_1=v_2=v_3=1, dus: de drie binnenbissectrices van een driehoek gaan door één punt.
  2. Laat men ook transversalen toe buiten de driehoek, dan moet men aan de constanten v_i enkel een ander teken geven. Hetr esultaat van hierboven blijft behouden.
  3. We kunnen een hoektransversaal ook kenmerken door de verhouding u_i van de oppervlaktedelen waarin de driehoek door de ceviaan verdeeld wordt.
    U_1=\dfrac{\text{opp} AA'C}{\text{opp} AA'B}=\dfrac{|A'C|}{|A'B|}. Het is eenvoudig te zien dat u_1u_2u_3=v_1v_2v_3 en dus geldt: De 3 hoektransversalen zijn concurrent als en slechts als u_1u_2u_3=1. Onder deze vorm is de stelling ook gekend als de stelling van Ceva.
  4. Nu geldt bijvoorbeeld voor de zwaartelijnen van een driehoek dat u_1=u_2=u_3=1, dus: de drie zwaartelijnen van een driehoek gaan door één punt.
  5. We kunnen dit ook ondzerzoeken voor de drie hooigtelijnen.
    u_1=\dfrac{b \cos \gamma}{c \cos \beta}u_2=\dfrac{c \cos \alpha}{a \cos \gamma} en u_3=\dfrac{a \cos \beta}{b \cos \alpha} en dus is u_1u_2u_3=1. Bijgevolg geldt: de drie hoogtelijnen van een driehoek gaan door één punt.