Matrixgroepen

Noem GL_n(F) de verzameling van alle n x n matrices over het veld F met een determinant die niet nul is. Het is duidelijk dat deze verzameling, uitgerust met de gewone matrixvermenigvuldiging, een groep is, want:

  • Omdat det( A.B)=det(A).det(B) zal GL_n(F) gesloten zijn onder de vermenigvuldiging.
  • Omdat de determinant verschillend is van nul, heeft elke matrix een inverse.
  • De determinant van de eenheidsmatrix ( neutraal element) is verschillend van nul.

Een paar opmerkingen:

  • GL_n(F) is niet-abels voor elke n\geq 2 en voor elk veld F.
  • GL_n(F) is een eindige groep als en slechts als F een eindig veld is. Eindige velden zijn er voor elke waarde van p priem en voor alle priemmachten p^m.
  • Als F een eindig aantal elementen q bezit, dan is het aantal elementen van GL_n(F) gegeven door de formule

        \[(q^n-1)(q^n-q)\cdots(q^n-q^{n-1})\]

  • Neem bijvoorbeeld F=\mathbb{Z}_2, dan is de orden van GL_2(\mathbb{Z}_2) gelijk aan 6. De enige niet-abelse groep van orde 6 is S_3, dus is

        \[GL_2(\mathbb{Z}_2) \cong S_3\]

Een ander ‘leuk’ voorbeeld is de Heisenberg groep H(F), vernoemd naar de Duitse natuurkundige Werner Heisenberg( 1901-1976).

H(F) bevat alle 3 x 3 bovendriehoeksmatrices van de vorm

    \[\begin{pmatrix} 1&a&b\\0&1&c\\0&0&1\end{pmatrix}\]

Het is duidelijk dat deze matrices allen een determinant gelijk aan 1 hebben, dus is H(F) een deelgroep van GL_3(F). Neem voor F een eindig veld met q elementen , dan zien we dat de orde van H(F) gelijk is aan q^3

Bekijken we even de situatie als F=\mathbb{Z}_2, dan telt H(F) dus 8 elementen. Er zijn 5 elementen van orde 2, zoals bijvoorbeeld \begin{pmatrix} 1&1&0\\0&1&0\\0&0&1\end{pmatrix} en 2 elementen van orde 4, zoals bijvoorbeeld \begin{pmatrix} 1&1&0\\0&1&1\\0&0&1\end{pmatrix}. Bijgevolg is

    \[H(\mathbb{Z}_2)\cong D_4\]

Een nieuwe algebra

Een algebra is eigenlijk een verzameling uitgerust met één of meerdere bewerkingen. We kennen allemaal getallenverzamelingen met daarin een optelling en een vermenigvuldiging. Maar je kan ook een algebra definiëren in een verzameling zonder getallen. Neem bijvoorbeeld de verzameling punten in het vlak (a,b,c,…) en de bewerking a.b =c met c het midden van [a,b] en a.a=a.

  • Het is een binaire bewerking: met twee punten komt terug een punt overeen.
  • Deze bewerking is commutatief : a.b=b.a want het midden van [a,b] is hetzelfde als het midden van [b,a].
  • De bewerking is niet associatief: meestal is a.(b.c) niet gelijk aan (a.b).c. We kunnen de haakjes in uitdrukkingen van de vorm (a.b).c dus niet weglaten.
  • We kunnen ook vergelijking van de vorm a.x=b oplossen. We noteren de oplossing als \frac{b}{a}.
  • We moeten goed oppassen om rekenregels die we kennen uit de getallenleer, niet zomaar over te dragen naar deze nieuwe algebra. Zo is \frac{a}{b}.\frac{c}{d}=\frac{a.c}{b.d} maar is a.\frac{b}{c} niet gelijk aan \frac{a.b}{c}.

Rekenen in dergelijke wiskundige structuur is zeer boeiend en is onderdeel van de abstracte algebra waarin begrippen zoals groepen, ringen, velden, vectorruimten e.d. gebruikt worden om bepaalde ‘algebra’s’met zelfde eigenschappen samen te brengen.