Goniometrische substituties

We kennen het gebruik van een goniometrische substitutie bij het berekenen van onbepaalde integralen. Maar ze kunnen ook hun nut hebben bij de studie van ongelijkheden. Een voorbeeld:

Als a,b,c,en d positieve reële getallen zijn en

    \[\frac{1}{1+a^4}+\frac{1}{1+b^4}+\frac{1}{1+c^4}+\frac{1}{1+d^4}=1\]

bewijs dan dat abcd \geq 3.

  • Stel a^2=\tan x, b^2=\tan y,c^2=\tan z en d^2=\tan t
  • Omdat 1+\tan^2x=\frac{1}{\cos^2x} wordt de gegeven ongelijkheid: \cos^2x+\cos^2y+\cos^2z+\cos^2t=1
  • We gebruiken nu de ongelijkheid van het rekenkundig en meetkundig gemiddelde: \sin^2x=1-\cos^2x=\cos^2y\cos^2z\cos^2t \geq 3(\cos y.\cos z.\cos t)^{\frac{2}{3}}
  • Analoog \sin^2y\geq 3(\cos x.\cos z.\cos t)^{\frac{2}{3}}.
  • Of \sin^2z\geq 3(\cos x.\cos y.\cos t)^{\frac{2}{3}}.
  • En \sin^2t\geq 3(\cos x.\cos y.\cos z)^{\frac{2}{3}}.
  • Als we nu deze 4 ongelijkheden met elkaar vermenigvuldigen vinden we dat \sin^2x.\sin^2y.\sin^2z.\sin^2t \geq 81 \cos^2x.\cos^2y.\cos^2z.\cos^2t.
  • Hieruit volgt dat \tan^2x.\tan^2y.\tan^2z.\tan^2t \geq 81 of a^4b^4c^4d^4 \geq 81.
  • Omdat a,b,c en d positief zijn volgt hieruit dat abcd \geq 3.