Opgave 40

Een convexe zeshoek is ingeschreven in een cirkel met straal r. Twee zijden van deze zeshoek hebben als lengte 7 eenheden , terwijl de vier overige als lengte 20 eenheden hebben. Bepaal de straal van de cirkel.

Antwoord

  • Wat de volgorde van de zijden is, steeds moet minstens aan één zijde met lengte 7 een zijde met lengte 20 aanliggend zijn. Noem de middelpuntshoek tegenover de zijde met lengte 20  eenheden 2a en de middelpuntshoek tegenover de zijde met lengte 7 eenheden 2b.
  • Door het apothema te trekken op de zijden van de zeshoek vinden we dat \sin a=\frac{10}{r} en \sin b=\frac{3,5}{3}.
  • De som van alle middelpuntshoeken is 360^\circ, dus 2*2b+4*2a=360^\circ. Hieruit volgt dat b+2a=90^\circ.
  • Dan geldt er dat \sin b=\cos 2a=1-2\sin^2 a
  • Volgens een vorig punt is dus 1-2\sin^2 a=\frac{3,5}{r}. Of

        \[1-2\Big(\frac{10}{r}\Big)^2=\frac{3,5}{r}\]

  • Dit geeft een vierkantsvergelijking: 2r^2-7r-400=0
  • De enige positieve oplossing van deze vergelijking is 16.
  • De straal is 16 eenheden lang.