Fractaal ontsnappingsspel

Peter is een geheim agent die gevangen gehouden wordt door terroristen Hij heeft een ontsnappingsplan: volg de kwadratische vergelijking z_{n+1}=z_n^2+c, waarbij de vloer van zijn kamer als het complexe vlak wordt bekeken en waar hij in de oorsprong staat.  Peter kent echter de constante c niet. Voor welke waarden van c heeft hij een kans op ontsnapping?

                                                 

Proberen we eerst c = 0. Maar dan wordt, voor elke n, z_n=0 en blijft hij steeds op dezelfde plaats. Als we andere waarden van c proberen, zijn er 3 mogelijkheden:

  1. De rij z_n convergeert naar een vast punt.
  2. De rij z_n wordt herhaald in een eindige cyclus van punten en wordt een periodieke rij.
  3. De rij z_n divergeert weg van de oorsprong en Peter heeft kans op ontsnapping.

Dit verhaal is eigenlijk het verhaal van de Mandelbrot verzameling, namelijk de verzameling van alle complexe getallen c waarvoor de baan van z_{n+1 }=z_n^2+c begrensd is ( dus niet divergeert) met startpunt (0,0).

Boom van Pythagoras

De boom van Pythagoras is een fractal bedacht door de Nederlandse wiskundeleraar Albert E. Bosman in 1942 en werd vernoemd naar Pythagoras vanwege de eigenschap dat het vierkant op de schuine zijde getekend, even groot is als de twee vierkanten gebouwd op de rechthoekszijden.  De fractal wordt opgebouwd door vierkanten en lijkt op de vorm van een dwarsdoorsnede van een broccoli of bloemkool.