Hoogtedriehoek

De hoogtedriehoek van een driehoek ABC is de driehoek gevormd door de  voetpunten van de drie hoogtelijnen van deze driehoek.

Enkele speciale eigenschappen:

  • Het hoogtepunt van driehoek ABC is het middelpunt van de ingeschreven cirkel van zijn hoogtedriehoek.
  • Van alle driehoeken ingeschreven in driehoek ABC(d.i de hoekpunten liggen op de zijden  van driehoek ABC) heeft de hoogtedriehoek de kleinste omtrek.
    Dit wordt ook wel eens het probleem van Fagnano genoemd naar Giovanni Fagnano die dit probleem stelde in 1775.

Formules in een driehoek

We geven 7 eigenschappen die, bij het onderzoeken van eigenschappen van een driehoek, zeer nuttig kunnen zijn. Noteer de halve omtrek van de driehoek met s en de oppervlakte met K. Verder zijn r en R respectievelijk de stralen van de ingeschreven en omgeschreven cirkel.

  • K=\frac{1}{2}ab \sin \gamma=\frac{1}{2}ac \sin \beta=\frac{1}{2}bc\sin \alpha.
  • K=\sqrt{s(s-a)(s-b)(s-c)}. (formule van Heroon)
  • K=rs.
  • 2R=\frac{a}{\sin \alpha}=\frac{b}{\sin \beta}=\frac{c}{\sin \gamma}.(sinusregel)
  • K=\frac{abc}{4R}.
  • 1+\cos \alpha=\frac{(a+b+c)(-a+b+c)}{2bc},1-\cos \alpha=\frac{(a-b+c)(a+b-c)}{2bc}.
  • \sin \frac{\alpha}{2}=\sqrt{\frac{(s-b)(s-c)}{bc}},\cos \frac{\alpha}{2}=\sqrt{\frac{s(s-a)}{bc}}.

De sluitingsstelling van Thomsen

Neem een punt P_1 op de zijde [BC] van een driehoek ABC. Trek een evenwijdige met AC en noem het snijpunt met [AB] het punt P_2. Trek van daaruit een evenwijdige met BC en noem het snijpunt met [AC`] het punt P_3. Als je zo verder gaat komt je uiteindelijk terug in het punt P_1. Dit resultaat staat bekend als de sluitingsstelling van Thomsen.

Kies een doorloop zin voor de driehoek zodat een punt de zijde verdeelt in een ‘eerste ‘ en een ’tweede ‘ deel. P_1 verdeelt [BC] in twee stukken met verhouding 1:k. Door de evenwijdigheid zal P_2 dan de zijde [AB] verdelen in 2 stukken met verhouding k:1

De verhouding keert dus om telkens we een andere zijde bereiken. Bij elke  3 stappen zitten we terug op het lijnstuk [BC].. Na 6 stappen komen we dus terug op [BC] en nu is de verhouding van de stukken dezelfde als in het begin. Dus P_7 zal samenvallen met P_1.

 

Dit resultaat danken we aan Gerhard Thomsen , een Duitse wiskundige die leefde van 23/6/1899 tot 4/1/1934.

Driehoeken

Bekijken we enkele eigenschappen over zijden en hoeken in een willekeurige driehoek:

  1. De som van de hoeken van een driehoek is 180°
  2. Een buitenhoek van een driehoek is groter dan elke niet aanliggende binnenhoek        (\delta > \alpha en \delta > \beta)
  3. In een driehoek ligt, tegenover een grotere zijde, een grotere hoek en omgekeerd tegenover een grotere hoek ligt een grotere zijde.
  4. Elke zijde van een driehoek is kleiner dan de som van beide andere zijden. Je kan deze eigenschap veralgemenen naar veelhoeken: elke zijde van een veelhoek is kleiner dan de som van de andere zijden.