Andere dobbelstenen

Iedereen kent deze klassieke dobbelsteen. Nemen we nu twee van dergelijke dobbelstenen en berekenen we de som van het aantal ogen: 

De vraag is nu: kunnen we geen ander stel van dobbelstenen vinden die dezelfde verdeling geeft?

  • We stellen onze gewone dobbelsteen voor door

        \[x^6+x^5+x^4+x^3+x^2+x\]

    Je leest deze veelterm als: er is 1 kant met 6stippen, 1 kant met 5 stippen,…
  • Wanneer je nu met 2 dobbelstenen gooit, voer je eigenlijk het product uit van die veelterm met zichzelf en krijg je dus (x^6+x^5+x^4+x^3+x^2+x)^2=x^{12}+2x^{11}+3x^{10}+...+x^2 Je leest in deze uitkomst dan volledig het bovenstaande schema.
  • Noem nu het gezochte stel andere dobbelstenen door f(x) en g(x).
  • We willen dat f(x).g(x)=x^{12}+2x^{11}+3x^{10}+...+x^2 .
  • De ontbonden vorm van de veelterm in het rechterlid is

        \[x^2(x+1)^2(x^2+x+1)^2(x^2-x+1)^2\]

  • Hieruit volgt dat we opzoek moeten naar een a,b,c en d  zodat

        \[f(x)=x^a(x+1)^b(x^2+x+1)^c(x^2-x+1)^d\]


    g(x)=x^{2-a}(x+1)^{2-b}(x^2+x+1)^{2-c}(x^2-x+1)^{2-d}
  • Omdat we zes zijvlakken hebben moet f(1)=6 , dus moet 2^b3^c=6 of b=c=1
  • Verder kan a zeker niet nul zijn want dan zou f(0) niet 0 zijn. En dus kan a ook niet 2 zijn. Bijgevolg is a=1.
  • Voor d=1 krijgen we de klassieke dobbelstenen.
  • Nemen we d=0, dan is f(x)=x(x+1)(x^2+x+1)=x^4+2x^3+2x^2+x. Dis geeft een dobbelsteen met op de zijvlakken 4/3/3/2/2/1
  • De andere dobbelsteen geeft dat g(x)=x(x+1)(x^2+x+1)(x^2-x+1)^2=x^8+x^6+x^5+x^4+x^3+x of een dobbelsteen met op de zijvlakken 8/6/5/4/3/1.
  • Hier zie je dat de verdeling inderdaad hetzelfde is tussen de 2 sets van dobbelstenen.

 

Technieken bij kansrekening

We onderzoeken 3 types oefeningen van kansrekening, gebaseerd op de manier waarop we ze benaderen.

  • Door te tellen. Neem bijvoorbeeld een zak met 16 knikkers , 4 blauwe en 12 groene. Je neemt er twee tegelijkertijd. Wat is de kans dat ze allebei blauw zijn? We gebruiken de formule van Laplace en we zoeken eerst het aantal mogelijkheden om 2 knikkers te nemen: C(16,2), het aantal combinaties van 2 elementen uit 16. Dan tellen we het aantal gunstige mogelijkheden: C(4,2). Besluit, na vereenvoudiging :

        \[P(\text{ 2 keer blauw} )= \dfrac{1}{20}\]

  • Meetkundige benadering. Neem een getal tussen 1 en 4 en een tweede getal tussen 2 en 6. Bereken de kans dat de som van die twee getallen groter is dan 5.Alle mogelijkheden om die 2 getallen te nemen komen overeen met de punten in de rechthoek ABCD.  De rechte Ef heeft vergelijking x+y=5. De gunstige mogelijkheden zijn de punten in de veelhoek EBDCF. De kansen kunnen nu berekend worden door de oppervlakten te delen. Nu is E(1,4) en F(3,2), dus we vinden

        \[P(x+y>5)=\dfrac{5}{6}\]

  • Kansen bereken via algebra. Jan en Piet spelen een spel met twee dobbelstenen. Ze gooien om de beurt en wie het eerst dubbel 1 gooit, die wint. Jan mag beginnen. Hoe groot is de kans dat Jan wint?Noteer de winstkansen van Jan en Piet respectievelijk door x en y. Dan weten we al zeker dat x+y=1. De kans dat Jan wint bij de eerste worp is \dfrac{1}{36}. De kans dat Piet bij zijn eerste worp wint is \dfrac{35}{36}*\dfrac{1}{36},  want eerst moet Jan verliezen en dan moet hij winnen. De kans dat Jan wint bij zijn tweede worp is \dfrac{1}{36}*\Big(\dfrac{35}{35}\Big)^2 . De kans dat Piet  wint bij zijn tweede worp is \dfrac{1}{36}*\Big(\dfrac{35}{35}\Big)^3. Je kan zo verder gaan en via de som van de termen van een meetkundige reeks het gewenste resultaat vinden, maar je kan ook opmerken dat de kans dat Piet wint altijd de kans is dat Jan wint vermenigvuldigd met \dfrac{35}{36}, dus y=\dfrac{35}{36}*x. Je krijgt een stelsel met 2 vergelijkingen en 2 onbekenden, dat als resultaat geeft dat x=\dfrac{36}{71}