Rationale getallen

Is het juist dat, indien x^7 en x^{12} rationaal zijn, x eveneens rationaal is?

We weten dat de vermenigvuldiging en de delig door een getal, verschillend van 0, inwendige bewerkingen zijn in \mathbb{Q}.  Dus als x^{12} en x^7 rationaal zijn, dan is hun quotiënt x^5 dat ook . Maar dan is het quotiënt van x^7 en x^5, en dat is x^2, ook een rationaal getal. Als x^2 rationaal is, dan ook (x^2)^3=x^6. Tenslotte volgt uit het feit dat x^6 en x^5 allebei rationaal zijn dat hun quotiënt x dat ook is.Het antwoord op de gestelde vraag is dus bevestigend.

We kunnen dit ook anders oplossen: We zoeken eigenlijk twee getallen a en b zodat (x^{12})^a:(x^7)^b=x, waarbij a en b gehele getallen zijn. Maar dan moet

    \[12a-7b=1\]

Dit is een Diophantische vergelijking en omdat de grootste gemene deler van 12 en 7 gelijk is aan 1, heeft deze vergelijking oneindig veel oplossingen. De meest eenvoudige is a=3 en b=5. Dit geeft ons in één keer ook de mogelijkheid het probleem te veralgemenen. Als we in de opgave werken met bijvoorbeeld x^9 en x^{12}, dan klopt het niet meer: de Diophantische vergelijking 12a-9b=1 heeft immers geen oplossingen omdat de grootste gemene deler van a en b gelijk is aan 3.