Som 28

Op hoeveel manieren N kan je 28  schrijven als som van verschillende natuurlijke getallen ( \neq 0)?

  • Noteer S_k(n) als het aantal mogelijkheden om n te schrijven als som van k verschillende natuurlijke getallen, verschillend van 0.
  • Het is niet zo  moeilijk om S_2(28) uit te rekenen: 1+27,2+26,…13+15. Dus S_2(28)=13.
  • Omdat 1+2+3+4+5+6+7=28 is S_7(28)=1. Bovendien zal voor k>7: S_k(28)=0.
  • Berekenen we eerst S_3(28). Stel dus dat x+y+z=28 en neem x<y<z. Als x>1, dan is x-1,y-1,z-1 een drietal met som 25, dus een mogelijkheid  uit S_3(25). Omgekeerd kan je ook met elke mogelijkheid van S_3(25), een mogelijkheid van S_3(28) laten corresponderen met elementen groter dan 1. 
  • Stel echter dat x=1, dan is  y-1,z-1 een tweetal met som  25 en dus een mogelijkheid uit S_2(25).
  • Uit vorige redeneringen  volgt S_3(28)=S_3(25)+S_2(25) of algemener:

        \[S_3(n)=S_3(n-3)+S_2(n-3)\]

  • Herhaaldelijk toepassen van die formule geeft: S_3(28)=S_2(25)+S_2(22)+S_2(19)+S_2(16)+S_2(13)+S_2(10)+S_2(7)+S_2(4).
  • Maar S_2(n)=\frac{n}{2}-1 als n even is en S_2(n)=\frac{n-1}{2} als n oneven is. Hieruit volgt dat S_3(28)=12+10+9+7+6+4+3+1=52.
  • Om S_4(28) te berekenen gebruiken we een analoge formule S_4(n)=S_3(n-4)+S_2(n-4). Idem voor S_5(28) en S_6(28).
  • Enkele berekingen staan in volgende tabel en zo vinden we

        \[N=13+52+84+57+14+1=221\]