Julia fractaal

Neem de functie f(x)=x^2+c en neem een willekeurige startwaarde x_1. Bereken de functiewaarde van x_0 en noem die x_1. Bereken vervolgens de functiewaarde van x_1 en noem die x_2. We verkrijgen zo een rij getallen

    \[x_{n+1}=f(x_n)\]

Gaston Julia ( 1893-1978) publiceerde in 1919 zijn boek Mémoire sur l’iteration des fonctions rationelles waarin hij het iteratief gedrag van deze functie(s) onderzocht.

We bestuderen nu

de relatie z_{n+1}=f(z_n) in het complexe vlak. Als de rij z_0,z_1,z_2,... begrensd is, dan gaan we de startwaarde z_0 plotten. De verzameling punten in het complexe vlak waarvoor de rij begrensd is noemen we de Julia verzameling horend bij c.

Er zijn op basis hiervan twee verzamelingen te construeren: de verzameling van de punten z0 waarvoor het iteratieve proces begrensd is (de Julia-set bij C) en  de verzameling van de punten z0 waarvoor de verzameling niet-begrensd is. De rand van het “begrensdheidsgebied” wordt een “fractaal” genoemd, de Julia-fractaal bij c.

Dit levert zeer mooie figuren :

Of de san Marco fractaal en het dendriet…

 

Lhuilier

De studie van veelvlakken kan teruggevoerd worden naar de piramiden van het Oude Egypte. Maar het waren voornamelijk de Grieken die geïnteresseerd waren in de wiskundige eigenschappen van regelmatige veelvlakken. Zij ontdekten  de 5 platonische lichamen, waarvan een volledige beschrijving werd gegeven door Theiatetos ( 400 BC).

In 1750 formuleerde Euler(1707-1783) een formule die een verband legt tussen het aantal zijvlakken, het aantal hoekpunten  en het aantal ribben van een veelvlak: Z – R + H = 2. We zeggen dat deze veelvlakken Eulerkarakteristiek 2 hebben.

Maar Euler zag één punt over het hoofd, namelijk de kwestie van convexiteit. De veelvlakken die Euler en de Grieken bestudeerden, waren allemaal convex zonder dat dit expliciet werd verondersteld. In 1619 beschreef Kepler een regelmatig niet-convex veelvlak, namelijk de stella octangula. 

De kwestie van de convexiteit heeft dan ook geleid tot uitzonderingen op de formule van Euler. In 1811 vond Lhuilier( 1750-1840), een Zwitserse wiskundige, 3 soorten veelvlakken waarvoor de formule niet meer klopte. Deze soorten veelvlakken waren echter convex. 

Het was uiteindelijk Poincaré die de formule van Euler veralgemeende tot : Z – R + H = 2 – 2g, waar bij g het aantal gaten in het veelvlak is.

Nicolai Lobatschevsky

Wanneer Euclides 23 eeuwen geleden zijn meetkunde in systematische gedaante bracht, had hij zich nooit kunnen inbeelden hoeveel invloed deze later zou hebben. De Euclidische meetkunde is uitermate geschikt om de wereld rondom ons te beschrijven. In de wetenschap voor 1800 heeft men altijd gedacht dat de Euclidische meetkunde het enige meetkundig systeem was.

Onder de axioma’s die Euclides aan de basis van zijn systeem legde, was er één, met name het parallellenpostulaat, dat al vlug in vraag werd gesteld. Men achtte dit axioma van een andere aard als de overige vier en men twijfelde zelfs aan de noodzakelijkheid ervan, omdat het afhankelijk van of een gevolg van de andere axioma’s zou zijn. Gedurende meer dan 2000 jaar hebben beroemde wiskundigen getracht het parallellenpostulaat te bewijzen.

Vanaf de tweede helft van de achttiende eeuw begon men te denken dat men het parallellenpostulaat of elk equivalent postulaat, moest toelaten zonder bewijs. Uiteindelijk leidde dit tot de ontdekking van nieuwe meetkundige systemen. De eersten die hiertoe in staat zijn geweest waren Gauss, Bolyai en Nicolai Ivanovitch Lobatschevsky ( 1792-1856).

Op 23 februari 1826 geeft Lobatschevsky, voor de faculteit wiskunde en natuurkunde van de universiteit van Kazan, een lezing onder de naam Imaginaire meetkunde . Hier zet hij zijn nieuwe ideeën duidelijk naar voor. De essentie van het ongepubliceerde artikel wordt later toegevoegd aan zijn werk De elementen van de meetkunde . Lobatschevsky ondervindt zware tegenwerking en kritiek. Hij herziet zijn werk in een nieuw boek De nieuwe  elementen van de meetkunde. In 1840 verschijnt nog een werk van hem over zijn bedenkingen, namelijk 

In deze boeken vindt men een nieuwe meetkunde: de hyperbolische meetkunde. Als men het parallellepostulaat ( door elk punt P gaat er juist 1 rechte die een gegeven rechte a niet snijdt)  niet opneemt, dan onderscheidt men twee typen niet-euclidische meetkunde: de hyperbolische meetkunde waar en oneindig veel rechten bestaan door P die a niet snijden en de elliptische meetkunde waar er geen rechte bestaat met die eigenschap.

Om deze meetkunde te visualiseren kan men gebruik maken van het model van Beltrami-Klein of van de modellen van Poincaré.