Opgave 39

Bewijs dat geen enkel getal van de vorm

    \[3^m+3^n+1\]

met m en n strikt positieve gehele getallen, een volkomen kwadraat is.

Antwoord

  • Veronderstel dat er toch een natuurlijk getal k bestaat zodat

        \[3^3+3^n+2=k^2\]

  • Dan is 3^m+3^n=(k+1)(k-1). Omdat het linkerlid even is en omdat k-1 en k+1 dezelfde pariteit hebben, zijn k-1 en k+1 opeenvolgende even getallen.
  • Dit betekent ook dat ofwel k-1 ofwel k+1 een viervoud is. Het rechterlid (k-1)(k+1) is dus deelbaar door 8.
  • Bij deling door 8 zijn de resten van machten van 3 ofwel 1 ofwel 3. De som 3^m+3^n is dus modulo 8, gelijk aan 2,4 of 6 en dus zeker niet deelbaar door 8.
  • Bijgevolg kan 3^m+3^n+1 nooit een volkomen kwadraat zijn.