Opgave 15

Zoek het algemeen voorschrift van de rij a_{n+1}-2a_n=F_n met a_0=0, waarbij F_n de rij van Fibonacci is met F_0=0,F_1=1,F_2=1,...

Antwoord

  • Het rechterlid van de formule is niet nul, zodat we geen lineaire recurrente rij krijgen. Maar dat kunnen we verhelpen door ook te schrijven dat  a_{n+2}-2a_{n+1}=F_{n+1} en a_{n+3}-2a_{n+2}=F_{n+2}.
  • De laatste vergelijking verminderd met de vorige en de opgave geeft, gebruikmakend van de eigenschappen van de rij van Fibonacci, dat a_{n+3}-3a_{n+2}+a_{n+1}+2a_n=0.
  • De karakteristieke vergelijking van deze lineaire recurrentie is x^3-3x^2+x+2=(x-2)(x^2-x-1). Volgens de theorie van de lineaire recurrente rijen is dan a_n=A.2^n+B.\alpha^n+C.\beta^n. Hierbij is \alpha=\dfrac{1+\sqrt{5}}{2} en \beta=\dfrac{1-\sqrt{5}}{2}. We weten, ook door gebruik te maken van de theorie van de lineaire recurrentie, dat F_n=\dfrac{\alpha^n-\beta^n}{\alpha-\beta}.
  • In a_n=A.2^n+B.\alpha^n+C.\beta^n, bepalen we A,B en C door gebruik te maken van a_0=0,a_1=0 en a_2=1. We vinden A=1, B=-\dfrac{\alpha^2}{\alpha-\beta} en C=\dfrac{\beta^2}{\alpha-\beta}.
  • Bijgevolg is a_n=2^n-F_{n+2}.