Nootje 51

20 leerlingen van een zelfde klas versturen  in december elk 10 wenskaarten naar 10 verschillende klasgenoten. Toon aan dat er minstens twee leerlingen zijn die een kaart naar elkaar sturen.

“Antwoord“

  • Dit doet me denken aan het duivenhokprincipe of principe van Dirichlet:  Wanneer n + 1 duiven in n hokken neerstrijken, dan is er altijd minstens 1 hok met minstens twee duiven.
  • De hokken zijn de koppels leerlingen: hiervoor moet je het aantal 2-combinnatir nemen van 20 elementen en dat is \binom{20}{2}=190.
  • De duiven zijn de brieven: zo zijn er 20*10=200
  • Bijgevolg heeft minstens 1 koppel twee brieven en zijn er dus zeker twee leerlingen die aan elkaar geschreven hebben.