Middendriehoek

De middendriehoek van een driehoek ABC is de driehoek SRQ, gevormd door de middenparallellen van de gegeven driehoek. 

Enkele eigenschappen:

  • De oppervlakte van de middendriehoek is \frac{1}{4} van de oppervlakte van de gegeven driehoek.
  • De omtrek van de middendriehoek is \frac{1}{2} van de omtrek van de gegeven driehoek.
  • De middendriehoek  is gelijkvormig met de gegeven driehoek: de middendriehoek is het beeld van ABC onder een homothetie met centrum het zwaartepunt van ABC en als factor -\frac{1}{2}.
  • De middendriehoek en driehoek ABC hebben hetzelfde zwaartepunt.
  • Het hoogtepunt van de middendriehoek valt samen met het middelpunt van de omgeschreven cirkel van driehoek ABC.
  • De voetpunten van de hoogtelijnen van driehoek ABC liggen op de omgeschreven cirkel van de middendriehoek.

  • De omgeschreven cirkel van de middendriehoek is de negenpuntscirkel van ABC ( de cirkel door de middens van de zijden, de voetpunten van de hoogtelijnen en de middens van de lijnsegmenten van uit de hoekpunten naar het hoogtepunt ).
  • En dan nog deze afsluiter: bedenk zelf maar de stelling!