Een driehoek verdelen in een aantal driehoeken met gelijke oppervlakte

Is het mogelijk om een driehoek te verdelen in een willekeurig aantal driehoeken met gelijke oppervlakte?

  • Voor n = 2  gebruiken we een zwaartelijn. Driehoeken ACM en ABM hebben een gelijke basis ( CM = MB)  en een zelfde hoogte ( afstand van A tot BC).
  • Voor n = 4 gebruiken we  de constructie van de middenparallel. Hier hebben we 4 congruente driehoeken, dus 4 driehoeken met gelijke oppervlakte.
  • Voor n = 6 tekenen we de drie zwaartelijnen. Noteren we met S(ABC) de oppervlakte van driehoek ABC. Dan is S(AOD)=S(DOB), S(BOE)=S(COE) en S(FOC)=S(AOF). Maar ook is S(ACE)=S(AEB) of S(AFO)+S(FOC)+S(COE)=S(AOD)+S(ODB)+S(BOE). Na vereenvoudiging volgt hieruit dat S(AOF)=S(AOD). Herhaling met de twee andere zwaartelijnen levert uiteindelijk volgend resutaat: de drie zwaartelijnen verdelen driehoek ABC in zes driehoeken met gelijke oppervlakte.
  • Voor willekeurige n werken we als volgt. Neem het voorbeeld van n = 5. Als we 5 driehoeken moeten hebben met gelijke oppervlakte, kiezen we een punt P op BC zodat 4.S(ACP)=S(APB). Omdat  deze driehoeken dezelfde hoogte hebben volstaat het P zo te kiezen dat PB= 4. CP. Daarna kiezen we een punt Q op AB zodat 3.S(PAQ)=S(PQB). Analoog voor de consructie van R en S.

Perfecte vierkanten

Een perfect vierkant van orde n is een vierkant dat opgedeeld is in n verschillende vierkanten waarvan geen twee vierkanten even groot zijn.
Het eerste perfecte vierkant werd in 1939 gevonden door Roland Sprague. Dit perfecte vierkant had orde 55. In de jaren daarop vond men nog meer perfecte vierkanten, ook van kleinere orde.

In 1962 begon de Nederlandse informaticus Adrianus Duijvestijn een zoektocht naar het perfecte vierkant met de laagste orde. Het duurde nog tot 1978 voordat computers snel en krachtig genoeg waren om dit probleem op te
lossen.

 

 

Het perfecte vierkant met de laagste orde wordt opgebouwd met 21 kleinere vierkantjes en heeft een zijde van 112.

Wiskundige intuïtie

 

De Franse wiskundige Henri Poincaré (1854-1912) getuigt ( Mathematical Creation, in The foundations of Science):” geheel tegen mijn gewoonte dronk ik zwarte koffie en ik kon niet slapen. De ideeën kwamen bij bosjes op en ik voelde dat ze met elkaar in botsing kwamen, zodat paren van ideeën zich bij elkaar aansloten, om het  zo maar eens te zeggen, tot ze een stabiele combinatie vormden. Het schijnt dat in zulke gevallen, men getuige is van het werk dat door het eigen onbewuste gedaan wordt.

 

De rede werkt sequentieel: stap voor stap komt men vanuit de aannamen tot nieuwe
uitspraken. Bij de intuïtie gaat het anders: men komt opeens tot een uitspraak en men
weet eigenlijk niet hoe. Intuïtie vormt een belangrijk element bij de beoefening van de
wiskunde .

Een uitspraak verkregen via de intuïtie kan een belangrijke schakel vormen in een complex bewijs of begrip. Deze intuïtieve stap moet nog wel gecontroleerd worden. In een uiteindelijk opgeschreven bewijs ziet men dan vaak niet meer terug of een stap op grond van redeneren of op grond van intuïtie gezet is.

Voor de Duitse wiskundige Gauss (1777-1855) kwam de grote intuïtie van God. De
Franse wiskundigen Poincaré (1854-1912) en Hadamard (1865-1962) hebben uitgebreid over dit onderwerp geschreven. Poincaré stelt dat  intuïtie ontstaat
doordat het onbewuste voortdurend met de materie bezig is. De wiskundige schoonheidsbeleving speelt hierbij een belangrijke rol, doordat het onderbewustzijn het
bewuste denken ‘wakker maakt’ wanneer er een wiskundige ontdekking gedaan is.
Meestal gaan deze gepaard met een grote schoonheidsbelevenis. Daarna moet de intuïtie wel op haar juistheid geverifieerd worden. Een andere Franse wiskundige, Hadamard (1865-1963) stelt dat het onbewust denken niet volgens lukraak toeval verloopt, maar volgens bepaalde patronen. Hiervoor is wel de juiste geestelijke voorbereiding nodig. Dan maakt de geest in eerste instantievele combinaties waaruit in tweede instantie de juiste gekozen worden.

Plato en de verdubbeling van de kubus

Het probleem van het ’verdubbelen van de kubus’  luidt: construeer de ribbe van een kubus die een twee keer zo grote inhoud heeft als die van een gegeven kubus.

 

Volgens de legende consulteerden de burgers van Athene het orakel van Apollo in Delos in 430 v.Chr. om te horen hoe zij de pest, die een vernietigende werking had op hun land, moesten bestrijden. Het orakel antwoordde dat, om de pest te stoppen, zij hun altaar in grootte moesten verdubbelen. De Atheners verdubbelden plichtsgestrouw elke zijde van het altaar, en de pest verslechterde! De correcte interpretatie was dat zij het volume van het altaar moesten verdubbelen, niet slechts de lengte van de zijdes; dit bleek een zeer moeilijk oplosbaar probleem. Ten gevolge van deze legende wordt het probleem vaak het Delische probleem genoemd.

De oude Grieken poogden de constructie uit te voeren met behulp van ’hun’ constructiemiddelen: de passer en liniaal. Maar het bleek daarmee niet te kunnen.
Vele eeuwen later werd bewezen dat de oplossing met passer en liniaal niet mogelijk is.
Echter, er zijn wel andere middelen om de constructie uit te voeren. Zo heeft Nicomedes (ca. 180 v.Chr.) de conchoïde, een bijzondere kromme lijn, ontdekt waarmee hij de oplossing kon construeren.

Wij geven een eenvoudige oplossing die toegeschrevn wordt aan Plato. Stel dat de gegeven kubus een ribbe heeft met lengte a en de gevraagde kubus een ribbe met de lengte x. Dan kunnen we het probleem als volgt omschrijven:
Gegeven: a; Construeer: een x die voldoet aan 

    \[x^3 = 2a^3\]

;

Denk je een rechthoekig trapezium ABCD waarin de diagonalen loodrecht op
elkaar staan .

Als we SC de lengte a geven en SB de lengte 2a, dan zal DS  of p dus, gelijk zijn aan de gevraagde  afstand. Het is duidelijk dat de driehoeken 1,2 en 3 allen gelijkvormig zijn ( gelijk hoeken via verwisselende binnenhoeken of complementen van verwisselende binnenhoeken). Hieruit volgt dat \frac{a}{p}=\frac{p}{q} of p^2=aq. Verder is ook \frac{a}{p}=\frac{q}{2a} of q=\frac{2a^2}{p}. Als we deze twee formules samnevoegen krijgen we p^3=2a^3 en dus is p het gewenste antwoord.

Het verdelen van de inzet

Een populaire visie op de ontwikkeling van de kanstheorie komt uit de hoek van de kansspelen. Klassiek is het verhaal over Chevalier De Mere ( 1607-1684) die
Pascal ( 1623-1662) vroeg de kans te berekenen om in vier worpen met een dobbelsteen tenminste één zes te gooien.

Een ander mooi voorbeeld vinden we in een werk van Franciscus Van Schooten, uitgegeven in 1660. Daarin staat een bijdrage van Christanus Huygens ( 1629-1695) over Van reckeninghe in Speelen van Geluck. Hierin behandelt hij onder andere het volgend vraagstuk:
Veronderstel dat twee spelers A en B na een gelijke inzet te hebben gegeven het tegen elkaar opnemen in een eerlijk spel. Ze komen overeen dat wie het eerst 6 ronden gewonnen heeft de totale inzet krijgt. Het spel wordt echter afgebroken op het ogenblik dat A 5 spelen gewonnen heeft en B 3 spelen. Hoe moet de inzet redelijkerwijs verdeeld worden?

Cardano (1501-1576) besprak het probleem in 1539 en gaf als oplossing dat speler A dan \dfrac{6}{7} van de pot krijgt en B de rest. Tartaglia ( +-1499-1557) gaf ook een oplossing in 1556 : A krijgt \dfrac{2}{3} van de inzet. Een eerste, naar huidig inzicht, juiste oplossing komt er van Fermat (1601-1665) in een brief van 1654 aan Pascal (1623-1662). Fermat redeneert als volgt: de overeenkomst was wel degelijk 6 rondjes te winnen. Dus moet de inzet verdeeld worden a rato van de winstkansen van beide spelers in de veronderstelling dat het spel wordt uitgespeeld. er kunnen nog hoogstens 3 spelen gespeeld worden die de volgende uitslag kunnen geven ( we schrijven a voor winst voor speler A en b voor winst van speler B): aaa,aab,aba,abb, baa,bab,bba,bbb. Dus 8 mogelijkheden;  in 7 ervan wint speler A en in 1 ervan speler B. Bijgevolg krijgt A uiteindelijk \dfrac{7}{8} van de totale inzet en B slechts \dfrac{1}{8}.

Het mag duidelijk zijn dat het vastleggen van een juiste uitkomstenverzameling hét uitgangspunt moet zijn voor een goede opbouw van het kansexperiment. het was uiteindelijk de Rus Kolmogorov die rond 1930 deze gedachtegang via een axiomatisch systeem goed vastlegde.