Middendriehoek

De middendriehoek van een driehoek ABC is de driehoek SRQ, gevormd door de middenparallellen van de gegeven driehoek. 

Enkele eigenschappen:

  • De oppervlakte van de middendriehoek is \frac{1}{4} van de oppervlakte van de gegeven driehoek.
  • De omtrek van de middendriehoek is \frac{1}{2} van de omtrek van de gegeven driehoek.
  • De middendriehoek  is gelijkvormig met de gegeven driehoek: de middendriehoek is het beeld van ABC onder een homothetie met centrum het zwaartepunt van ABC en als factor -\frac{1}{2}.
  • De middendriehoek en driehoek ABC hebben hetzelfde zwaartepunt.
  • Het hoogtepunt van de middendriehoek valt samen met het middelpunt van de omgeschreven cirkel van driehoek ABC.
  • De voetpunten van de hoogtelijnen van driehoek ABC liggen op de omgeschreven cirkel van de middendriehoek.

  • De omgeschreven cirkel van de middendriehoek is de negenpuntscirkel van ABC ( de cirkel door de middens van de zijden, de voetpunten van de hoogtelijnen en de middens van de lijnsegmenten van uit de hoekpunten naar het hoogtepunt ).
  • En dan nog deze afsluiter: bedenk zelf maar de stelling!

Een meetkundige parel

Onlangs vond ik volgende stelling die ik helemaal niet kende. Een echt pareltje: De spiegelbeelden van het hoogtepunt van een driehoek ABC rond de zijden en rond de middens van de zijden liggen op de omgeschreven cirkel van ABC.

H’ is het spiegelbeeld van H (hoogtepunt) rond de zijde AB en CD is een middellijn van de omgeschreven cirkel.

  • \widehat{CDB} is een rechte hoek, als omtrekshoek op een halve cirkel. Omdat AH loodrecht op BC staat, zijn BD en AH evenwijdig.
  • Analoog is AD ook evenwijdig met BH.
  • Dus is AHBD een parallellogram. 
  • Omdat de diagonalen van een parallellogram elkaar midden doordelen is M_c het midden van AB en dus is D inderdaad het spiegelbeeld van H bij een puntspiegeling rond het midden van B.
  • Omdat HC’=C’H’ is C'M_c de middenparallel van driehoek HH’D en staat DH’ loodrecht op CC’ omdat DH’ evenwijdig is met C'M_c.
  • Dus is \widehat{CH'D}=90^\circ  en wegens de eigenschappen van omtrekshoeken ligt dus H’ op de omgeschreven cirkel van driehoek ABC.

Isogonaal toegevoegde punten

Om het isogonaal toegevoegd punt van P  te berekenen, construeert men het snijpunt van de spiegelbeelden van AP, BP en CP ten opzichte van de respectievelijke bissectrices van de hoeken A,B en C. Het is duidelijk dat de hoeken CAP en  QAB gelijk zijn. analoog zijn ook ABP en QBC gelijk en BCP en QCA.

Een andere mogelijke constructie werkt met de voetpuntsdriehoek:

Men tekent de loodlijnen vanuit P op de drie zijden van de driehoek. Hun voetpunten vormen de voetpuntsdriehoek. Construeer nu snijpunt Q van de loodlijnen uit A,B en C op de zijden van de voetpuntsdriehoek. Dan zijn P en Q isogonaal toegevoegd.

Een paar voorbeelden:

  • Het middelpunt van de ingeschreven cirkel is isogonaal toegevoegd aan zichzelf.
  • Het hoogtepunt van een driehoek en het middelpunt van zijn omgeschreven cirkel zijn isogonaal toegevoegd.

Perfecte rechthoeken

Een rechthoek R die kan verdeeld worden in verschillende vierkanten van verschillende grootte,  noemt men een perfecte rechthoek. Zo een verdeling noemt men vierkansverdeling van orde n als er n verschillende vierkanten gebruikt worden.

Dit is een vierkansverdeling van orde 9 van een rechthoek van 32 bij 33. Deze verdeling werd gevonden door A Moron (1904-1971), een Pools wiskundige in 1925.

Lange tijd dacht men dat perfecte vierkanten niet bestonden.  Tot in 1939 de Duitse wiskundige R. Sprague een perfect vierkant vond van orde 55. Later , in 1940 hebben Reichert en Toepkin zelfs bewezen dat een perfect vierkant van een orde kleiner dan 9 niet bestaat. 

21 is de kleinste orde voor een perfect vierkant. Hieronder zie je een perfect vierkant met een unieke 21 vierkansverdeling . Is de orde hoger dan 21, dan zijn er meerder vierkanten mogelijk; zo zijn er bijvoorbeeld 441 perfecte vierkanten van orde 26.

Stelling van Viviani

Kies een punt binnen een gelijkzijdige driehoek. Bereken de afstand van dit punt tot de drie zijden van de driehoek. Waar je dit punt ook plaatst de som van die afstanden is gelijk aan de hoogte van de driehoek.

De stelling kan eenvoudig bewezen worden. Noem het punt P en de driehoek ABC. De oppervlakte van ABC is gelijk aan de som van de oppervlakten van de driehoeken PAB, PAC en PBC. Hieruit volgt het gestelde.

Deze stelling is vernoemd naar de Italiaanse wiskundige en wetenschapper Vincenzo Viviani( 1622-1703).

We kunnen de eigenschap ook veralgemenen tot een regelmatige n-hoek. In dat geval is de som van de afstanden vanuit een punt binnen de veelhoek naar de n zijden gelijk aan n keer het apothema van de veelhoek.Zelfs het omgekeerde is waar: wanneer de som van de minimale afstanden naar elk van de zijden van een veelhoek onafhankelijk is van het gekozen punt binnen de veelhoek, dan is het een regelmatige veelhoek .