Kansen op het schaakbord.

Kies 2 vakjes op een schaakbord. Wat is de kans dat die twee vakjes 1 punt gemeen hebben?

  • Het aantal mogelijkheden om 2 vakjes te kiezen op een nxn bord is n^2 \choose 2 =\frac{n^2(n^2-1)}{2}.
  • Elk vakje in de hoek heeft 1 geschikte buur ( groen). Dus zo heb je al 4 mogelijkheden.
  • De vakjes op de rand, die niet in de hoeken liggen, hebben 2 geschikte buren(blauw). Er zijn 4(n – 2) dergelijke vakjes op de rand, dus heb je 2.4(n-2) gunstige mogelijkheden.
  • De inwendige vakjes hebben 4 geschikte buren ( geel). Er zijn (n-2)^2 dergelijke vakjes, dus 4(n-2)^2 gunstige mogelijkheden.
  • In het totaal zijn er 4+8(n-2)+4(n-2)^2=4n^2-8n+4 gunstige mogelijkheden. Maar die zijn dubbel geteld!
  • De kans dat er twee vakjes juist 1 punt gemeen hebben is

        \[\frac{4(n^2-2n+1)}{n^4-n^2}\]

  • Voor een  8×8 bord geeft dit ongeveer 4,8%.

Scherp of stomp

Zijn er meer scherpe dan stompe driehoeken? Tellen dan maar. Maar dan zouden er evenveel zijn, namelijk oneindig veel. Misschien moeten we de vraag anders stellen: Neem de verzameling van alle driehoeken. Wat is de kans, dat een willekeurig genomen element van die verzameling, stomp is?

De vraag is dan uiteraard hoe we de verzameling van alle driehoeken vastleggen. Omdat de grootte van de hoeken van essentieel belang is, lijkt het gunstig om met elke driehoek een koppel getallen (x,y) te laten overeenkomen. Hierbij zijn de hoeken van de driehoek dan x,y en \pi -(x+y). Om een driehoek te vormen moeten x en y voldoen aan:

\begin{cases} 0<x<\pi \\0 <y<\pi\\ 0<x+y<\pi \end{cases}

De verzameling driehoeken komt dan overeen met de driehoek ABC.

Om scherp te zijn moet x en y voldoen aan:

\begin{cases} 0<x<\frac{\pi}{2} \\0 <y<\frac{\pi}{2}\\ \pi-(x+y)<\frac{\pi}{2} \end{cases}

Dit komt overeen met driehoek DEF. De kans opdat een driehoek scherp zou zijn kunnen we dan berekenen door de oppervlaktes te vergelijken en dus is de kans dat een driehoek scherp is gelijk aan \frac{1}{4}. Of met andere woorden de kans dat een driehoek stomp is, is \frac{3}{4}.

Opmerkingen:

  • De punten op DE en EF geven een rechthoekige driehoek. Het is duidelijk dat de kans dat een driehoek rechthoekig is, gelijk is aan 0.
  • Er zijn ook andere mogelijkheden om de verzameling driehoeken vast te leggen. Je kan bijvoorbeeld drie punten op een cirkel nemen, waarvan je één vast houdt. Je kan dan werken met omtrekshoeken en middelpunts hoeken.

De paradox van Bertrand

Sinds Zeno aantoonde dat de snelvoetige Achilles de schildpad nooit zou inhalen, hebben vele paradoxen de wiskundige gemeenschap bezig gehouden. Elke paradox draagt bij tot een dieper inzicht in de wiskunde die men bedrijft.

Ook de kanstheorie is niet gespaard gebleven van haar portie paradoxen. Begin vorige eeuw waren verschillende wiskundigen zich bewust van bepaalde problemen bij het berekenen van kansen. Onder andere Joseph Bertrand( Franse wiskundige, die leefde van 1822 tot 1900) wilde beklemtonen dat een degelijke fundering van verscheidene, intuïtief gebruikte begrippen noodzakelijk was. Het was wachten tot 1933 om via het monumentale werk van A.N.Kolmogorov te ontdekken dat de ideale axiomatische theorie voor de kansrekening die der maattheorie is.

Besluit: een uitspraak in kanstheorie heeft enkel zin met betrekking tot een bepaalde kansruimte, in het bijzonder met betrekking tot een bepaald universum.

 

Lees hier meer over het koordenprobleem van Bertrand.