Modulorekenen

De eindige rekenkunde, ook wel modulaire rekenkunde genoemd, wordt beschreven in het boek Disquisitiones Arithmeticae van Gauss, een buitengewoon invloedrijk werk uit 1801, toen de auteur nog maar vierentwintig jaar oud was.

dis

Stel a,b,m \in \mathbb{Z},m>1. Indien a en b bij deling door m dezelfde rest geven, d.w.z. indien a-b=cm voor zekere c \in \mathbb{Z}, heten a en b congruent modulo m. We noteren a\equiv b mod m.Zo is bijvoorbeeld  3\equiv 63 mod 5, 7\equiv -1 mod 8 en 12^2\equiv 1 mod 13.

Enkele eigenschappen :

  • Als a\equiv b mod m en b\equiv c mod m, dan is a\equiv c mod m.
  • Als a\equiv b mod m en c\equiv d mod m, dan is a+c\equiv b+d mod m.
  • Als a\equiv b mod m en n \in \mathbb{N}, dan is a^n\equiv b^n mod m.
  • Als a\equiv b mod m dan is voor elke c \in \mathbb{Z} : ac\equiv bc mod m.
  • Als a\equiv b mod m en c\equiv d mod m, dan is ac\equiv bd mod m.

Rekenen met congruenties lijkt erg op het rekenen met vergelijkingen. Er is echter een belangrijk verschil: uit ac\equiv bc mod m met c\neq 0 mod m hoeft niet te volgen dat a\equiv b mod m. Zo is 6.12\equiv 6.7 mod 10 maar 12 is niet congruent met 7 modulo 10. In andere gevallen gaat het wel op. De voorwaarde waarop de vereenvoudiging met c wel kan, is dat c onderling ondeelbaar is met m.
Dus als ac\equiv bc mod m en ggd(c,m) = 1, dan is a\equiv b mod m.
Als ggd(c,m) = d, dan volgt uit ac\equiv bc mod m dat a\equiv b mod( \frac{m}{d}).

Rekent men modulo m, dan zijn er m verschillende soorten getallen, al naar gelang ze verschillende resten geven bij deling door m. De verzameling van alle gehele getallen die eenzelfde rest geven heet een restklasse modulo m. Er zijn dus precies m verschillende restklassen modulo m. De restklasse die een getal a bevat, noteert men als \overline{a}. Deze notatie is natuurlijk niet eenduidig bepaald, want als a\equiv b mod m, stellen \overline{a} en \overline{b} dezelfde restklasse modulo m voor en omgekeerd.

Werken we modulo 4 dan is \overline{0}=\left\{0,4,8,12,\cdots}\right\}, \overline{1}=\left\{1,5,9,13,\cdots\right\}, \overline{2}=\left\{2,6,10,14,\cdots\right\}, \overline{3}=\left\{3,7,11,15,\cdots\right\} .

Men kan in de verzameling restklassen modulo m, genoteerd door \mathbb{Z}_m, een optelling en een vermenigvuldiging defini\”eren via \overline{a}+\overline{b}=\overline{a+b} en \overline{a}.\overline{b}=\overline{ab}. Deze rekenregels lijken erg op de regels van optelling en vermenigvuldiging van gehele getallen.

Eigenschappen :

  • \forall \overline{a},\overline{b}\in \mathbb{Z}_m : \overline{a}+\overline{b}=\overline{b}+\overline{a}.
  • \forall \overline{a},\overline{b}\in \mathbb{Z}_m : \overline{a}.\overline{b}=\overline{b}.\overline{a}.
  • \forall \overline{a},\overline{b},\overline{c}\in \mathbb{Z}_m : (\overline{a}+\overline{b})+\overline{c}=\overline{a}+(\overline{b}+\overline{c}).
  • \forall \overline{a},\overline{b},\overline{c}\in \mathbb{Z}_m : (\overline{a}.\overline{b}).\overline{c}=\overline{a}.(\overline{b}.\overline{c}).
  • \forall \overline{a},\overline{b},\overline{c}\in \mathbb{Z}_m : \overline{a}.(\overline{b}+\overline{c})=\overline{a}.\overline{b}+\overline{a}.\overline{c}.
  • \forall \overline{a}\in \mathbb{Z}_m : \overline{a}+\overline{0}=\overline{a}.
  • \forall \overline{a}\in \mathbb{Z}_m : \overline{a}.\overline{1}=\overline{a}.
  • Er is een unieke restklasse \overline{x} met \overline{a}+\overline{x}=\overline{0}, namelijk \overline{x}=\overline{-a}.

Veronderstel dat  we de rest willen bepalen van 73\times52 bij deling door 7. Omdat 73 \equiv 3 mod 7 en 52 \equiv 3 mod 7, moet 73\times52 \equiv 3\times 3 mod 7 \equiv 9 mod 7 \equiv 2 mod 7. Dus de rest bij deling van 73\times52 door 7 is 2. We moeten daarvoor het product niet uitrekenen.

GGD en KGV

Gegeven zijn 2 natuurlijke getallen a en b. Het grootste natuurlijk getal dat zowel een deler is van a als van b heet de grootste gemene deler van a en b. Notatie : ggd[a,b). Het kleinste getal dat zowel een veelvoud is van a als van b , heet het kleinste gemene veelvoud van a en b. Notatie : kgv(a,b).

Men kan de grootste gemene deler en het kleinste gemene veelvoud van 2 getallen bepalen door beide getallen te ontbinden in priemfactoren. Vooral bij grotere getallen kan dit een omvangrijk werk zijn. Er is een veel snellere methode. Deze berust op de eigenschap dat als b=q.a+r , dan geldt er dat ggd (a,b) = ggd(a,r). Elke deler van a en b is immers ook een deler van r=b-q.a en omgekeerd elke deler van a en r is ook een deler van b. Deze werkwijze noemt men het algoritme van Euclides.

We berekenen  de ggd van 1970 en 1066 op twee manieren:

  1.  1970 = 2.5.197 en 1066 = 2.13.41, dus is ggd(1970,1066)=2
  2. 1970 = 1.1066 + 904 ; 1066=1.904+162 ; 904=5.162+94 ; 162=1.94+68 ; 94=1.68+26 ; 68=2.26+16 ; 26=1.16+10 ; 16=1.10+6 ; 10=1.6+4 ; 6=1.4+2 ; 4=2.2. Dus is ggd(1970,1066)=ggd(1066,904)=ggd(904,162)=ggd(162,94)=ggd(94,68) = ggd(68,26)=ggd(26,16)=ggd(16,10)=ggd(10,6)=ggd(6,4)=ggd(4,2)=2

Via dit algoritme kan men ( zoals hieronder in  de stelling van Bezout vermeld wordt) de grootste gemene deler van 2 getallen schrijven als een lineaire combinatie van die twee getallen.
ggd(1970,1066)= 2= 6 – 4 = 6 – (10 – 6) = 2.6 – 10 = 2.(16 – 10) – 10 = 2.16 – 3.10 = \ldots = 377.1066 – 204.1970.

Enkele eigenschappen

  • Elke gemeenschappelijke deler van a en b is ook een deler van ggd(a,b)
  •  Elk gemeenschappelijk veelvoud van a en b is ook een veelvoud van kgv(a,b).
  •  ggd(a,b).kgv(a,b)=a.b
  • Als n een deler is van a.b en als ggd(n,a) = 1 dan moet n een deler zijn van b.
  • Als ggd(a,b)=d dan geldt : ggd(\frac{a}{d},\frac{b}{d})=1
  • ggd(a,b) = ggd(b,a – qb)
  • De grootste gemene deler van 2 getallen is een lineaire combinatie van die twee getallen ( stelling van Bezout ).

Hoofdstelling van de rekenkunde

Elk samengesteld getal kan geschreven worden als het product van kleinere factoren. Als minstens 1 van beide samengesteld is , kan men die ook weer schrijven als product van kleinere factoren. Zo kan men doorgaan tot er slechts priemgetallen als factoren overblijven. men kan een samengesteld getal in het algemeen op verschillende manieren via een aantal tussenstappen in priemgetallen ontbinden. Het uiteindelijk resultaat, de ontbinding in priemfactoren, is steeds hetzelfde. Dit resultaat staat bekend als de hoofdstelling van de rekenkunde:

    \[\begin{center}De ontbinding in priemfactoren van een \\ natuurlijk getal is eenduidig bepaald.\end{center}\]

Deze eigenschap is in andere getalsysytemen niet noodzakelijk waar. Beschouw de verzameling van de even getallen \left\{2,4,6,\cdots \right\}. Sommige ervan kan men schrijven als het product van even factoren, bijvoorbeeld 20=2.10. Bij andere is dat niet mogelijk. We noemen even getallen die niet het product zijn van even factoren even-priemgetallen. Een even getal is te schrijven als product van even-priemgetallen, maar zo een ontbinding hoeft niet eenduidig te zijn. Zo is 420=6.70=10.42

Als een getal ontbonden is in priemfactoren, dan kan men het aantal delers bepalen. Stel dat n=2^{e_1}.3^{e_2}.5^{e_3}. \ldots .p_k^{e_k} dan heeft n juist (e_1+1)(e_2+1)(e_3+1).\ldots.(e_k+1) delers.

woestijn

Delers en priemgetallen

De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder , van natuurlijke getallen. In de getaltheorie is het gebruikelijk onder de verzameling van de natuurlijke getallen te verstaan de verzameling \mathbb{N}=\left\{1,2,\cdots \right\}, 0 wordt dan dus niet tot \mathbb{N} gerekend.

Een getal a is een deler van b als er een geheel getal n bestaat waarvoor geldt dat b=a.n. We noteren a|b . We noemen b dan een veelvoud van a.

Bij elk tweetal natuurlijke getallen a en b bestaan er gehele getallen q ( voor quotiënt ) en r ( voor rest ) zo , dat

    \[b=q.a+r \qquad \hbox {met} \qquad 0\leq r < a\]

Een natuurlijk getal, groter dan 1, dat geen delers heeft buiten 1 en zichzelf noemt men een priemgetal. Een getal, groter dan 1, dat geen priemgetal is heet een samengesteld getal. Het getal 1 is dus per definitie noch priem noch samengesteld.

Een paar eigenschappen :

  • Elke deler van a en b deelt ook elke lineaire combinatie ( ra+sb ) van a en b.
  • Er zijn oneindig veel priemgetallen.
  •  Als p een priemgetal is dat a.b deelt, dan deelt p ofwel a ofwel b.

priem