Priemfaculteit

Veronderstel dat p een priemgetal is. Definieer dan priemfaculteit p, genoteerd als p#, als het product van alle priemgetallen kleiner dan of gelijk aan p. Een paar voorbeelden.

    \[\begin{array}{c|r} p&p\#\\ \hline 2&2\\3&6\\5&30\\7&210\\11&2310 \end{array}\]

Men kan deze definitie uitbreiden voor niet priemgetallen. Zo is n# het product van alle priemgetallen kleiner dan n, als n niet priem is. Bijgevolg is, bijvoorbeeld, 7#=8#=9#=10#= 210.

Onderstaande grafiek geeft de waarde van n! en n# grafisch weer:

 

 

 

 

 

 

Verder is ook volgende eigenschap belangrijk: als n steeds maar toeneemt, zal (p\#)^{\frac{1}{n}} convergeren naar het getal van Euler: e

 

Is dat een kwadraat?

Hoe kan je bij grote getallen zien of een getal al dan niet een kwadraat is?  We geven twee gemakkelijke methoden om te kunnen constateren, dat een getal geen kwadraat is.

  • We kijken naar het laatste getal: alleen als dat een O, 1, 4, 5, 6 of 9 is kan het getal een kwadraat zijn. dus kunnen we gemakkelijk concluderen dat 475623872 geen kwadraat is. 
  • Berekenen we bij de eerste kwadraten eens de som der cijfers modulo 9. We noemen dit de testwaarde van het getal.
    Dan zie je dat de cijfers 1,0,4,7  steeds terugkeren. Omdat (9x+y)^2=81x^2+18xy+y^2 weten we dat de getallen 9x+y dezelfde testwaarde hebben dat y^2. Dus moeten we enkel rekening houden met de eerste rij op de tabel hierboven. Als de testwaarde niet 0,1,4 of 7 is dan kan het getal nooit een kwadraat zijn. Het getal 89254869 zou volgens de eerste methode een kwadraat kunnen zijn, maar de testwaarde is 6 en dus weten we volgens de tweede methode dat het zeker geen kwadraat is.
  • Beide methoden laten ons in de steek bij de getallen 147456 en 174456. De twee methoden zijn dus niet sluitend, maar je kan in ieder geval al veel getallen, op een snelle manier, uitsluiten.

 

 

Circulair priemgetal

Een  circulair priemgetal is een priemgetal dat een priemgetal blijft bij elke cyclische rotatie van de cijfers . Zo is 13 een circulair priemgetal, want het is priem en ook 31 is een priemgetal. 

Het is duidelijk dat een circulair priemgetal nooit het cijfer 0,2,4,5 of 8 kan bevatten, want door een cyclische permutatie komt dat cijfer ooit achteraan en dan is het getal deelbaar door 2 of 5 en dus niet priem.

De eerste circulaire priemen zijn 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, 97, 113, 131, 197,…

Er is een stelling die zegt dat elk priemgetal dat enkel bestaat uit enen, altijd een circulair priemgetal is. Eveneens beweert men dat er oneindig veel priemgetallen bestaan met enkel enen. Dus zijn er ook oneindig veel circulaire priemgetallen. Waarschijnlijk zijn er, vanaf 1000000, geen andere dan die met enkel enen.

Faculteitsconform getal

Een faculteitsconform getal  is een natuurlijk getal dat de som is van de faculteiten van zijn cijfers. Alhoewel 1=1! en 2=2!, noemen we 1 en 2 geen facultietsconforme getallen, omdat er niet sprake is van een som.

Wel een goed voorbeeld is

    \[145=1!+4!+5!\]

We kunnen de gebruikelijke onderzoeksvragen stellen: hoeveel van dergelijke getallen bestaan er? Eindig veel of oneindig? kan je ze genereren met een formule?

Wat we zeker kunnen vaststellen is dat ze maximaal uit 7 cijfers bestaan, want stel n een faculteitsconform getal met n cijfers, dan is

    \[10^{n-1}\leq N\leq n.9!\]

vanaf n=8 klopt die formule niet meer, omdat 10 000 000 \geq 8.9!=2 903 040.

Er blijkt nog slechts 1 ander  faculteitsconform getal te bestaan, namelijk 40585. Dit getal werd in 1964 via computerberekeningen gevonden door Leigh Janes en Ron S. Dougherty.

In de Nederlandse wiskundeliteratuur wordt een faculteitconform getal ook wel geldermangetal genoemd, naar de Nederlandse wiskundige en informaticus Henk-Jan Gelderman.

Periode decimaal getal

We kunnen elke breuk schrijven in zijn decimale vorm. Ofwel eindigt deze schrijfwijze ( niet repeterend) , zoals bij \frac{1}{4}=0,25 ofwel krijg je een deel dat zich steeds herhaalt ( repeterend). Neem bijvoorbeeld \frac{1}{}=0,333.... De periode is 3 ( het deel dat herhaald wordt ) en de lengte van de periode is 1.

Hoe kunnen we nu de lengte van die periode berekenen?

  • De teller van de breuk speelt geen rol bij de lengte van de periode. Vandaar dat we enkel  zullen werken met stambreuken \frac{1}{n}.
  • Een breuk is niet repeterend als de priemontbinding van de noemer enkel bestaat uit factoren 2 en 5.
  • De lengte van de deel na de komma, voor het repeterend deel: kijk naar het aantal twee en het aantal vijven in de priemfactor ontbinding en neem het grootste aantal van beiden. Zo is \frac{1}{35}=0,0285717285714... :  dus 1 cijfer voor het repeterend deel begint.
  • De lengte van de periode van \frac{1}{n} is de kleinste p waarvoor geldt dat n een deler is van 10^{p-1}.
  • Als n een priemgetal is dan is de lengte van de periode van \frac{1}{n} een deler van n – 1. Als de lengte juist n – 1 is, dan noemen we dat priemgetal een volledig herhalend priemgetal. Onder 1000 zijn dat het getallen 7, 23, 47, 59, 167, 179, 263, 383, 503, 863, 887, 983.
  • Als n en m priem zijn en de lengtes van de periodes van \frac{1}{n} en \frac{1}{m} zijn respectievelijk p_1 en p_2, dan is de lengte van de periode van \frac{1}{nm} het kleinste gemene veelvoud van p_1 en p_2 of een veelvoud daarvan.
  • Als n een priemgetal is waarvan de lengte van de periode gelijk is aan p, dan is de lengte van  de periode van \frac{1}{n^k} gelijk aan p.n^{k-1}.

Een voorbeeld: Neem de breuk \frac{1}{589}. De noemer is te schrijven als 589=19*31. De lengte van de periode voor een noemer 19 is een deler van 18 en narekenen leert ons dat het 18 is. De lengte van de periode voor een noemer 31 is een deler van 30 en blijkt 15 te zijn. Vervolgens nemen we het kleinste gemene veelvoud van 18 en 15: dit is 60. Bijgevolg is de lengte van de periode van \frac{1}{589} gelijk aan 90.