Les 2: ax+by+cz=d

Omdat ggd(a,b,c) = ggd( ggd(a,b),c) kunnen we recursief werken. Neem als voorbeeld de vergelijking

    \[3x-6y+16z=1\]

  • Herschrijf deze vergelijking als 3(x-2y)+16z=1.
  • Stel x-2y=u, dan wordt de gegeven vergelijking 3u+16z=1.
  • Gebruikmakend van de techniek uit les 1 vinden we dat u=-5-16t en z=1+3t, met t een willekeurig geheel getal.
  • Met dezelfde methode kunnen we via x-2y=1, de oplossing van x-2y=u schrijven als x=-u+2v en y=-u+v met v een geheel getal.
  • Na eliminatie van u vinden we dus dat x=5+16t+2v, y=5+16t+v en z=13t. Dit zijn alle gehele oplossingen van de gegeven vergelijking. Deze hangen af van 2 parameters.

Les 1: ax+by=c

Aan de hand van enkele voorbeelden bespreken we Diophantische vergelijkingen: dit zijn vergelijkingen met gehele coëfficiënten waarvan gehele oplossingen gevraagd worden.

We starten in les 1 met de basisvergelijking ax+by=c met a,b,c :in \mathbb{Z}. Neem bijvoorbeeld 7x+13y=81.

  • Omdat de grootste gemene deler van 7 en 13 gelijk is aan 1 en dit een deler is van 81, heeft deze vergelijking oplossingen.
  • Volgens de stelling van Bezout kunnen we deze grootste gemene deler schrijven als een lineaire combinatie van 7 en 13. Dat kan door het recursief gebruiken van het algoritme van Euclides voor het bepalen van de grootste gemene deler.
  • Zo is  7.2+13.(-1)=1 en dus is 7.162+13.(-81)=81 . Bijgevolg is (162,-81) een particuliere oplossing van de gegeven vergelijking.
  • Als we nu de twee vergelijkingen 7.162+13.(-81)=81 en 7x+13y=81 van elkaar aftrekken vinden we 7(162-x)=13(81+y). Bijgevolg is 7 een deler van 81+y en 13 een deler van 162-x.
  • Er bestaat dus een geheel getal t zodat

        \[\frac{162-x}{13}=\frac{81+t}{7}=t\]

    en dus is x=162-13t en y=-81+7t. Alle gehele oplossingen van de gegeven vergelijking zijn van deze vorm.

Kan men een hoek van 1 radiaal construeren met passer en liniaal?

 

In 1873 bewijst Charles Hermite dat het getal e, de basis van de natuurlijke logaritmen, transcendent is. Ferdinand Lindemann toont in 1882 de transcendentie van \pi aan. Het werk van Lindemann is in feite een handige veralgemening van het resultaat van Hermite. Lindemann bewijst: als z een algebraïsch getal is, verschillend van nul, dan is e^z transcendent. Transcendente getallen kunnen niet met passer en liniaal geconstrueerd worden.

De imaginaire eenheid i is een algebraïsch getal, want i is een wortel van de vergelijking x^2+1=0, bijgevolg is e^i transcendent. We weten dat e^i=\cos 1+i \sin 1. Omdat de som van twee algebraïsche getallen algebraïsch is , kunnen \cos 1 en \sin 1 onmogelijk allebei algebraïsch zijn. Maar als bijvoorbeeld \cos 1 algebraïsch zou zijn dan is \sin 1=\sqrt{1-\cos^2 1} het ook en omgekeerd. Bijgevolg zijn \cos 1 en \sin 1 allebei transcendent en is het duidelijk dat een hoek van 1 radiaal niet te tekenen is met passer en lineaal.

Het probleem van Bazel

Het probleem van Bazel is een beroemd probleem uit de staltheorie. Het werd voor het eerst in 1644 aan de orde gesteld door Pietro Mengoli (1626-1686), en werd bijna 100 jaar later, in 1735, opgelost door Euler.

Het probleem vraagt:

Deze reeks is bij benadering gelijk aan 1,644934.  Euler slaagde erin de exacte uitkomst te geven:

Het probleem heeft geleid tot nieuwe inzichten in de structuur van de reële getallen en de complexe getallen, en heeft bijgedragen tot de ontwikkeling van de analytische getaltheorie.

De Riemann-zeta functie \zeta is een belangrijke functie in de wiskunde vanwege het verband met de verdeling van de priemgetallen. De bovenstaande reeks is niets minder dan \zeta(2). Het omgekeerde getal  \frac{6}{\pi^2} is de kans dat twee willekeurige gehele getallen onderling ondeelbaar zijn.

De constante van Brun

Vrij veel priemgetallen zijn twee opeenvolgende oneven getallen, zoals 3 en 5 of 17 en 19. Of er oneindig veel zulke paren, priemtweelingen genoemd, zijn is niet bewezen .

In 1919 bewees de Noorse wiskundige Viggo Brun( 1885-1978) volgende eigenschap:de som van de omgekeerde waarden van de priemtweelingen nadert tot een bepaalde waarde, die nu de constante van Brun wordt benoemd.

  • Het is merkwaardig dat deze som begrensd is terwijl de som van de omgekeerden van alle priemgetallen oneindig groot is. Dit laat vermoeden dat het priemtweelingen eerder schaars zijn.
  • Het is onbekend of de constante van Brun een irrationaal getal is. Dit hangt ervan af of het aantal priemtweelingen eindig of oneindig is.
  • Een schatting van Pascal Sebah en Patrick Dechimel in 2002 die alle priemtweelingen tot 1016 gebruikt komt op B  ≈ 1,902160583104.