Les 4: ontbinding en exhaustie

Bij Diophantische vergelijkingen van een hogere graad kan je via ontbinding in factoren dikwijls de oplossing vinden. Neem bijvoorbeeld:

    \[3x^2-4xy+5=0\]

  • We kunnen deze vergelijking herschrijven als

        \[x(3x-4y)=-5\]

  • Als x en y gehele getallen zijn, dan moeten x en 3x-4y delers zijn van -5.
  • We kunnen gemakkelijk alle mogelijkheden opschrijven: 

        \[\begin{array}{c|c|c} x&3x-4y&y \\ \hline \\1&-5&2\\-1&5&-2\\5&-1&4\\-5&1&-4\end{array}\]

  • We hebben dus als oplossingen (1,2),(-1,-2),(5,4),(-5,-4).

 

Les 3: Stelsels Diophantische vergelijkingen

We lossen één van de vergelijkingen op en vullend die dan in de andere in, waardoor er een verband ontstaat tussen de parameters. Neem bijvoorbeeld:

    \[\left\{\begin{matrix} 3x-6y+16z=1\\2x+5y-6z=2\end{matrix}\right\]

  • Uit les 2 weten we dat de oplossing van de eerste vergelijking gegeven wordt door  x=5+16t+2v, y=5+16t+v, z=1+3t.
  • Invullen in de tweede vergelijking geeft: 2(5+16t+2v)+5(5+16t+v)-6(1+3t)=2. Na uitwerking vinden we 94t+9v=-27.
  • Dit is een Diophantische vergelijking met slechts twee onbekenden. De oplossingen hangen af van 1 parameter w: t=54-9w en v=-567+94w.
  • Brengen we deze waarden in bij de oplossingen van de eerste vergelijking van het stelsel, dan vinden we :

        \[\left\{\begin{matrix}x=-265+44w\\y=302-50w\\z=163-27w\end{matrix}\right\]

Les 2: ax+by+cz=d

Omdat ggd(a,b,c) = ggd( ggd(a,b),c) kunnen we recursief werken. Neem als voorbeeld de vergelijking

    \[3x-6y+16z=1\]

  • Herschrijf deze vergelijking als 3(x-2y)+16z=1.
  • Stel x-2y=u, dan wordt de gegeven vergelijking 3u+16z=1.
  • Gebruikmakend van de techniek uit les 1 vinden we dat u=-5-16t en z=1+3t, met t een willekeurig geheel getal.
  • Met dezelfde methode kunnen we via x-2y=1, de oplossing van x-2y=u schrijven als x=-u+2v en y=-u+v met v een geheel getal.
  • Na eliminatie van u vinden we dus dat x=5+16t+2v, y=5+16t+v en z=13t. Dit zijn alle gehele oplossingen van de gegeven vergelijking. Deze hangen af van 2 parameters.

Les 1: ax+by=c

Aan de hand van enkele voorbeelden bespreken we Diophantische vergelijkingen: dit zijn vergelijkingen met gehele coëfficiënten waarvan gehele oplossingen gevraagd worden.

We starten in les 1 met de basisvergelijking ax+by=c met a,b,c :in \mathbb{Z}. Neem bijvoorbeeld 7x+13y=81.

  • Omdat de grootste gemene deler van 7 en 13 gelijk is aan 1 en dit een deler is van 81, heeft deze vergelijking oplossingen.
  • Volgens de stelling van Bezout kunnen we deze grootste gemene deler schrijven als een lineaire combinatie van 7 en 13. Dat kan door het recursief gebruiken van het algoritme van Euclides voor het bepalen van de grootste gemene deler.
  • Zo is  7.2+13.(-1)=1 en dus is 7.162+13.(-81)=81 . Bijgevolg is (162,-81) een particuliere oplossing van de gegeven vergelijking.
  • Als we nu de twee vergelijkingen 7.162+13.(-81)=81 en 7x+13y=81 van elkaar aftrekken vinden we 7(162-x)=13(81+y). Bijgevolg is 7 een deler van 81+y en 13 een deler van 162-x.
  • Er bestaat dus een geheel getal t zodat

        \[\frac{162-x}{13}=\frac{81+t}{7}=t\]

    en dus is x=162-13t en y=-81+7t. Alle gehele oplossingen van de gegeven vergelijking zijn van deze vorm.

Kan men een hoek van 1 radiaal construeren met passer en liniaal?

 

In 1873 bewijst Charles Hermite dat het getal e, de basis van de natuurlijke logaritmen, transcendent is. Ferdinand Lindemann toont in 1882 de transcendentie van \pi aan. Het werk van Lindemann is in feite een handige veralgemening van het resultaat van Hermite. Lindemann bewijst: als z een algebraïsch getal is, verschillend van nul, dan is e^z transcendent. Transcendente getallen kunnen niet met passer en liniaal geconstrueerd worden.

De imaginaire eenheid i is een algebraïsch getal, want i is een wortel van de vergelijking x^2+1=0, bijgevolg is e^i transcendent. We weten dat e^i=\cos 1+i \sin 1. Omdat de som van twee algebraïsche getallen algebraïsch is , kunnen \cos 1 en \sin 1 onmogelijk allebei algebraïsch zijn. Maar als bijvoorbeeld \cos 1 algebraïsch zou zijn dan is \sin 1=\sqrt{1-\cos^2 1} het ook en omgekeerd. Bijgevolg zijn \cos 1 en \sin 1 allebei transcendent en is het duidelijk dat een hoek van 1 radiaal niet te tekenen is met passer en lineaal.