6. Wiskunde in het oude Indie

 

De eerste belangrijke beschaving in het Indus gebied was de Harappa-beschaving rond 2000 voor Christus

Het Vedische volk kwam India rond 1500 voor Christus binnen vanuit wat nu  Iran is.  In deze Vedische beschaving was de bevolking verdeeld in verschillende sociale klassen. de leiding berustte bij de priesterklasse, de Brahmanen. Hun heilige teksten staan bekend staan ​​als de Veda’s. De teksten dateren van ongeveer de 15e tot de 5e eeuw voor Christus en werden gebruikt voor offerrituelen die het belangrijkste kenmerk van de religie waren. De belangrijkste van deze documenten zijn de Baudhayana Sulbasutra geschreven rond 800 voor Christus en de Apastamba Sulbasutra geschreven rond 600 voor Christus. Minder gekend zijn de Manava Sulbasutra geschreven rond 750 voor Christus en de Katyayana Sulbasutra geschreven rond 200 voor Christus.

De Sulbasutra’s zijn bijlagen bij de Veda’s die regels geven voor het bouwen van altaren. Als het rituele offer succesvol zou zijn, moest het altaar zich  zeer precieze afmetingen hebben. Om de goden tevreden te stellen, moest alles met een zeer precieze formule worden uitgevoerd, dus werd wiskundige nauwkeurigheid van het grootste belang geacht. 

Alles wat bekend is van Vedische wiskunde is vervat in de Sulbasutras. Sommige historici beweren dat de wiskunde, meer speciaal de meetkunde, ook moet hebben bestaan ​​als ondersteuning van de astronomie.

Een paar voorbeelden van hun meetkundige kennis:

  • Een vierkant dat de som is van twee andere vierkanten
  • De diagonaal van een vierkant geeft een vierkant van dubbele oppervlakte.
  • Een vierkant dat gelijk is aan een cirkel (komt overeen met een waarde voor pi van ongeveer 3,00444)
  • De som van de oppervlakten van vierkanten van de lengte en breedte van een rechthoek geeft het vierkant van de diagonaal van de rechthoek.
  • Vermeerder de eenheid met een derde en dit derde met zijn vierde en verminder dat met het 34ste deel van dat vierde. zo bekom je een benadering voor de vierkantswortel van 2: 1,414215

De Sulbasutra’s bevatten geen enkel bewijs van de regels die ze beschrijven. Sommige regels, zoals de methode om een ​​vierkant te construeren dat gelijk is aan een bepaalde rechthoek, zijn exact. Anderen, zoals het construeren van een vierkant gelijk aan dat van een bepaalde cirkel, zijn benaderingen. 

 

 

5. Wiskunde in het oude China

Rond 1500 voor Christus  raakten de eerste cijfers in gebruik. De chinezen hadden karakters voor 1,2,3,… alsmede voor 10,100,1000,… Voor de nul gebruikten ze een spatie. Optellen en aftrekken gebeurde met telstokjes, gemaakt van bamboe. Voor vermenigvuldigen gebruikten ze tabellen  tot 9 maal 9.

Rond 200 voor Christus werden nagenoeg alle bestaande boeken verbrand, zodat we over de wiskunde van voor die tijd geen documenten hadden. Bij opgravingen rond 1900 werden toch wat documenten gevonden die samengesteld werden na de boekverbranding en die kunnen beschouwd worden als compilaties van de wiskundige kennis uit het verleden. De twee belangrijkste zijn :

  • Zhou Bi Suan-Jing ( de wiskundige klassieker van de gnomon en het cirkelvormig hemelpad): het behandelt ruim 250 astronomische en wiskundige problemen onder de vorm van gesprekken tussen een Chinese edelman en zijn astroloog. Het bevat één van de vroegste bewijzen van de stelling van Pythagoras.
  • Jiuzhang Suansu ( de negen afdelingen van mathematische kunst) :hier werden voor het eerst zowel positieve als negatieve getallen gebruikt. Er werd ook veel aandacht besteed aan magische vierkanten. De behandelde problemen zijn van praktische aard en men stelt zich meestal tevreden met het beschrijven van procedures, waarbij deductieve bewijzen ontbreken.

Niet-Euclidische meetkunde

 

De meetkunde, die we dagelijks gebruiken, wordt Euclidische meetkunde genoemd, ter ere van Euclides, die tussen 330 en 320 voor Christus een aantal boeken, genaamd „Elementen” geschreven heeft.

Hierin wordt  de meetkunde opgebouwd met stellingen vertrekkend van een vijftal postulaten of axioma’s: 
1. Door 2 verschillende punten gaat juist 1 rechte.
2. Een lijnstuk kan naar beide kanten onbeperkt worden
    verlengd.
3. Er kan met elk middelpunt en elke straal een cirkel
    getrokken worden.
4. Alle rechte hoeken zijn gelijk.
5. Door een punt P buiten een rechte , gaat precies één rechte
    die evenwijdig loopt met  de eerste rechte.

Dit laatste axioma staat bekend als het parallellenpostulaat.
Eeuwen heeft men gedacht dat men dit postulaat kon bewijzen aan de hand van de andere vier axioma’s. Trouwens de formulering van het parallellenpostulaat was oorspronkelijk anders.  De gegeven formulering komt van John Playfair. Deze formulering stamt uit 1795 en staat bekend als “Playfair’s axioma” . Een andere gelijkwaardige formulering van dit postulaat is dat de hoekensom van een driehoek gelijk is aan 180°.

Het duurde tot de 19 de eeuw voor het juist inzicht er kwam en wel bij 3 wiskundigen ongeveer gelijktijdig en waarschijnlijk onafhankelijk van elkaar: C.F.Gauss, J.Bolyai en I.Lobatschefsky.

Het was Joha,, Bolyai die tot het inzicht kwam dat het mogelijk was een meetkunde op te stellen, waarin door een punt buiten een rechte oneindig veel rechten gaan die de gegeven rechte niet snijden. Hij publiceerde zijn ideeën in 1832 en gaf zo gestalte aan de hyperbolische meetkunde. De som van de hoeken van een driehoek is hier minder dan 180°.  In de hyperbolische meetkunde wordt dus niet meer aan het parallellenpostulaat voldaan. 
Later werd ook de elliptische meetkunde ontdekt. Elliptische meetkunde is een niet-Euclidische meetkunde, waarbij door een punt buiten een rechte  geen andere rechten bestaat die de gegeven rechte niet snijdt.

De gewone meetkunde is dus niet de meetkunde, maar een  meetkunde. Met andere axioma’s krijgen we een ander soort meetkunde.

4.Egyptische wiskunde

Onze grootste kennis van de Egyptische wiskunde komt van twee papyri: Rhind ( rond 1450 v.C.) en Moscou (1750 v.C)

De Egyptenaren gebruikten een tientallig stelsel met volgende tekens:

 

 

 

 

 

 

De notatie is in wezen additief:

Enkele merkwaardigheden:

  • Om te vermenigvuldigen gebruikten ze een reeks van verdubbelingen. De vermenigvuldiging wordt dus herleid tot een aantal optellingen. Eén van de getallen werd dus in feite  binair herschreven. Zo wordt 25 x 13 = (16 + 8 + 1) x 13.
  • De Egyptenaren rekenden met stambreuken en eventueel hun complement: \frac{1}{n} of  \frac{n-1}{n}. Een stambreuk werd genoteerd als \overline{n}. Alle andere breuken trachtten ze te schrijven als som van stambreuken, waarbij elke stambreuk slechts één keer mag voorkomen. ze kenden hiervoor enkele formules zoals bvb. \frac{2}{3n}=\frac{1}{2n}+\frac{1}{6n}.
  • De deling werd beschouwd als een vermenigvuldiging met een stambreuk. Zo is het quotiënt van 13 door 21 gelijk aan (1+4+8).\overline{21}=\overline{21}+2.\frac{2}{21}+4\frac{2}{21}=\overline{21}+2.(\frac{1}{42}+\frac{1}{14})+4(\frac{1}{42}+\frac{1}{14})=\overline{21}+\overline{2}+\overline{14}.
  • De rekenkunde van de Egyptenaren was minder gevorderd dan die van de Babyloniërs.
  • Met de meetkunde was het anders gesteld, deze wordt wel eens  ” een geschenk van de Nijl ” genoemd. Toch vertoonde de meetkunde nooit een deductieve structuur.
  • Als iemand bij de jaarlijkse overstromingen van de Nijl land verloor, moest hij dit aan de farao melden. Deze stuurde dan dienaren die het verlies gingen opmeten en een proportionele belastingsvermindering toestonden. Het opmeten, en eventueel herverkavelen, was het werk van de harpedonapten, die gebruik maakten van touwen waarin op regelmatige afstanden knopen lagen. Zo maakten ze bvb. gebruik van de eigenschap: een driehoek waarvan de zijden 3-4-5 lengte hebben , is rechthoekig.
  • Ze kenden een formule voor de inhoud van een afgeknotte vierkantige piramide.
  • De jaarlijkse overstromingen gaven ook aanleiding tot kalenderrekening en astronomie.
  • Voor \pi gebruikten ze een heel goede benadering : 3,1605.
  • De Egyptische wiskunde heeft zich meer dan 2000 jaar kunnen ontwikkelen, maar starre staatsstructuren en geheimhouding door priesters verhinderden een ongeremde ontwikkeling. In het eerste millenium voor Christus zou een beschaving opstaan die op wiskundig gebied de Egyptische en Babylonische ver zou overvleugelen: de Griekse.

3.Wiskunde in Mesopotamië

 

Mesopotamië wordt beschouwd als de bakermat van onze beschaving: het schrift, het wiel en de woonentiteit, die we nu ‘stad’ noemen, waren uitvindingen van de verschillende beschavingen die achtereenvolgens het gebied beheersten: Soemerë, Ur, Akkad en Babylonië. 

Het Mesopotamisch numeriek systeem is zestigdelig en positioneel:

POSITIONEEL : De cijfers van 1 tot 59 werden voorgesteld door een combinatie van 2 symbolen: het eenheidssymbool en het tien-symbool. 

ZESTIGDELIG : 1.60³+57.60²+46.60+40 = 424000

 

Het getal 0 kenden ze niet. Optellen en aftrekken ging erg vlot. Het vermenigvuldigen had wat meer voeten in de aarde. In ons tientallig stelsel, moeten de tafels tot en met 9 bekend zijn om te kunnen vermenigvuldigen.  Doordat ze echter gebruik maakten van een zestigtallig stelsel moesten alle tafels tot en met 59 bekend zijn om verder te rekenen. Zij hadden per tafel 23 producten nodig: van 1 tot en met 20, 30, 40 en 50. In totaal dus 59 × 23 = 1357 producten. Er zijn ook kleitabletten met hierop de kwadraten van 1 tot en met 59 gevonden.  Door gebruik te maken van de formule :

    \[a.b = \frac{1}{2}\Big((a+b)^2-a^2-b^2\Big)\]

 

    \[a.b=\frac{1}{4}\Big((a+b)^2-(a-b)^2\Big)\]

konden ze via de tabellen met kwadraten ook vermenigvuldigingen uitvoeren. Om een deling uit te voeren hadden ze een tabel waarin de omgekeerden stonden van hun basisgetallen.

Lange tijd werd gedacht dat de Babyloniërs niet aan meetkunde deden, maar alleen rekenden om bijvoorbeeld voedselvoorraden bij te houden. maar men heeft kleitabletten gevonden waar twee intervallen op staan wanneer Jupiter aan de horizon verschijnt. De positie van de planeet wordt berekend op zestig en honderdtwintig dagen. De tekst bevat geometrische berekeningen gebaseerd op het oppervlak van een trapezium met lange en korte zijden.

 

We geven een paar voorbeelden uit de praktijk van de Babylonische wiskunde:

  • Een methode om de verhouding van de diagonaal tot de zijde van een vierkant te berekenen: Een vierkant met zijde 30 heeft een diagonaal 42;25,35. Daaruit wordt de verhouding van de diagonaal tot de zijde berekend als 1;24,51,10 of omgerekend in ons tiendelig stelsel 1,4142130 wat ongeveer de vierkantswortel uit 2 is.


  • Pythagorese drietallen  in het tablet Plimton 322: