Nootje 27

 

 

 

Spoiler

  • We zoeken de grootste waarde van een natuurlijk getal x waarvoor \sqrt{x^2-2021} een natuurlijk getal is. Noem dit getal n.
  • Dan geldt: x^2-2021=n^2 of x^2-n^2=2021
  • 2021 heeft 4 delers: 1,43,47 en 2021.
  • Dus is (x-n)(x+n)=1.2021 of (x-n)(x+n)=43.47
  • Uit de eerste gelijkheid volgt dat x-n=1 en x+n=2021. Bijgevolg is x=1011 en n=1010.
  • Uit de tweede gelijkheid volgt dat x-n=43 en x+n=47. Bijgevolg is x=45 en n=2.
  • De grootst mogelijk waarde van x is dus 1011.

Roosterpunten op een hyperbool

Beschouw de vergelijking

    \[3x^2-4xy+5=0\]

Bij de vraag  naar oplossingen (x,y) van deze vergelijking is het nodig te specifiëren tot welke verzameling deze oplossingen moeten behoren. De grafiek, volgens Wolfram Alpha, is:

  • Elke reële oplossing bepaalt een punt van deze parabool.
  • De rationale oplossingen zijn

        \[\{(q,\frac{3q^2+5}{4q}: q\in \mathbb{Q}\}\]

    De hyperbool bevat dus ook oneindig veel punten met rationale coördinaten.
  • Zijn hier gehele oplossingen bij en zo ja dewelke? Als we op zoek zijn naar gehele oplossingen en als de vergelijking ook enkel gehele coëfficiënten heeft, spreken we van een Diophantische vergelijking. 
    Omdat

        \[3x^2-4xy+5=0\leftrightarrow x(3x-4y)=-5\]

    moeten, als x en y geheel zijn, zowel x als 3x-4y gehele delers zijn van -5. Dit aantal is eindig.
    Dit geeft 4 oplossingen met gehele getallen of met andere woorden 4 roosterpunten op de hyperbool: (1,2),(-1,-2),(5,4) en (-5,-4)