Les 1: ax+by=c

Aan de hand van enkele voorbeelden bespreken we Diophantische vergelijkingen: dit zijn vergelijkingen met gehele coëfficiënten waarvan gehele oplossingen gevraagd worden.

We starten in les 1 met de basisvergelijking ax+by=c met a,b,c :in \mathbb{Z}. Neem bijvoorbeeld 7x+13y=81.

  • Omdat de grootste gemene deler van 7 en 13 gelijk is aan 1 en dit een deler is van 81, heeft deze vergelijking oplossingen.
  • Volgens de stelling van Bezout kunnen we deze grootste gemene deler schrijven als een lineaire combinatie van 7 en 13. Dat kan door het recursief gebruiken van het algoritme van Euclides voor het bepalen van de grootste gemene deler.
  • Zo is  7.2+13.(-1)=1 en dus is 7.162+13.(-81)=81 . Bijgevolg is (162,-81) een particuliere oplossing van de gegeven vergelijking.
  • Als we nu de twee vergelijkingen 7.162+13.(-81)=81 en 7x+13y=81 van elkaar aftrekken vinden we 7(162-x)=13(81+y). Bijgevolg is 7 een deler van 81+y en 13 een deler van 162-x.
  • Er bestaat dus een geheel getal t zodat

        \[\frac{162-x}{13}=\frac{81+t}{7}=t\]

    en dus is x=162-13t en y=-81+7t. Alle gehele oplossingen van de gegeven vergelijking zijn van deze vorm.