Sangaku 13

Antwoord

  • We zoeken de vergelijking van de groene cirkel , met middelpunt de oorsprong en straal r: x^2+y^2=r^2.
  • f(x)=\sqrt{r^2-x^2}  is de vergelijking van de bovenste halve cirkel
  • De cirkel raakt aan de rode kromme g(x) in P(x,y) als en slechts als f(x)=g(x) en f'(x)=g'(x).
  • De eerste betrekking betekent dat x+\sqrt{1}{x}=\sqrt{r^2+x^2}
  • De tweede betrekking geeft: 1-\frac{1}{x^2}=-\frac{x}{\sqrt{r^2-x^2}}
  • Hieruit volgt dat 1-\frac{1}{x^2}=-\frac{x^2}{x^2+1}.
  • Uitrekenen geeft x=\frac{1}{\sqrt[4]{2}}. En bijgevolg is y=\frac{1}{\sqrt[4]{2}}+\sqrt[4]{2}.
  • Nu is r^2=x^2+y^2, dus is r^2=2+2\sqrt{2}.
  • De vergelijking van de groene cirkel is:

        \[x^2+y^2=2+2\sqrt{2}\]