Op welk cijfer eindigt…

Wat is de rest bij deling door 10 van het 2022ste getal in de rij  

    \[3,3^3,3^{3^3},...\]

  • De gegeven rij kan ook gegeven worden door middel van een recursief voorschrift: t_1=3 en t_{n+1}=3^{t_n}.

  • Berekenen we een paar termen van de rij: 3 , 27 , 7625597484987. We zien dat ze zeer snel toenemen in grootte, maar we hebben wel al 2 keer een 7 achteraan. Zou dat een patroon zijn?
  • Elke term is een viervoud plus 3, want t_n=(4 voud -1)^{t_{n-1}} en omdat elke term in de rij oneven is is t_n dus een 4voud min 1, of met anders geformuleerd : een drievoud plus 3.

  • Dan is t_{n+1}=3^{4v+3}=3^3.3^{4v}=27.81^v.
  • Werken we nu modulo 10: t_{n+1}\equiv 7.1^v\equiv 7.
  • Dus elke term van de rij eindigt op 7, dus ook de 2022ste term.