Een 0, gevolgd door een komma en alle natuurlijke getallen op rij, noemt men het getal van Champernowne (Engels wiskundige 1912-2000).
- Het is een irrationaal getal, want het kan niet geschreven worden als een quotiënt van twee gehele getallen.
- Sommige irrationale getallen zijn transcendent ( zoals en e): ze zijn geen oplossing van een veeltermvergelijking met gehele coëfficiënten. Het getal van Champernowne is transcendent.
- Sommige transcendente getallen zijn normaal. Elke eindige reeks van cijfers komt bij benadering even vaak voor als alle andere cijferreeksen van dezelfde lengte. David Champernowne heeft laten zien dat zijn getal normaal is door aan te tonen dat niet alleen de cijfers 0 tot en met 9 even vaak voorkomen, maar ook alle combinaties van twee cijfers en alle combinaties van drie cijfers.
Het getal van Champernowne is een van de eerste geconstrueerde normale getallen. Hij bedacht het in 1933 en in 1937 bewees de Duitse wiskundige Kurt Mahler dat het transcendent was.