Een mannen urinoir…

Een vraag van een collega wiskundeleraar van het HDC…

In een mannentoilet staan 13 urinoirs op een rijtje. Persoon 1 komt binnen en kan kiezen waar hij zich zet. Nadien komt persoon 2 binnen en kiest een zo ver mogelijke plaats van persoon 1. Daarna komt persoon 3 binnen en maximaliseert de afstand tot de persoon waar hij het dichtste tegen staat. Indien er meerdere plaatsen zijn die de afstand maximaliseren, dan kiest hij willekeurig. Er blijven personen binnen komen die aan hetzelfde principe de urinoirs vullen. Personen gaan zich nooit vlak naast elkaar zetten (er blijft altijd minstens 1 plek tussen) Waar moet de eerste persoon zich nu zetten zodat de urinoirs optimaal gevuld zullen zijn? En hoe ziet zo’n optimale vulling er uit? Voor welke hoeveelheid urinoirs zal het altijd optimaal gevuld kunnen zijn? 

Een mogelijke oplossing vind je hier.

 

Griekse wiskunde : deel 9

Na Apollonius begint voor de Griekse meetkunde een periode van stagnatie en verval. Personen zoals Heron van Alexandrië (1ste eeuw NC), Menelaos van Alexandrië(1ste eeuw NC), Theon van Alexandrië(4e eeuw NC), Proclus en Pappus leveren weinig nieuwe bijdragen , maar brengen hoofdzakelijk commentaren op en aanvullingen van de werken van de oude meesters. De laatste Alexandrijnse wiskundige is Hypatia, de eerste bekende vrouwelijke wiskundige.

De voornaamste redenen van de teleurgang van de Griekse meetkunde zijn:

  • Het gebrek aan belangstelling van de Romeinse keizers voor de zuivere wetenschappen.
  • De uitbuiting van de Hellenistische landen door de Romeinen, waardoor het wetenschappelijk onderzoek niet langer financieel gesteund werd.
  • Het ontbreken van zuiver-algebraïsche methodes ( en vooral symbolen) waardoor een verdere ontwikkeling bemoeilijkt wordt.

22/7

Vroeger vertelde men ons dat we voor \pi de breuk \frac{22}{7} mochten nemen. Natuurlijk drong het niet bij iedereen door dat dit een benadering was. Een bewijsje:

Neem de functie

    \[f(x)=\frac{x^4(1-x)^4}{1+x^2}\]

  • f is strikt positief en continu tussen 0 en 1.
  • Dus is \int_0^1f(x) dx>0.
  • De Euclidische deling geeft \frac{x^4(1-x)^4}{1+x^2}=x^6-4x^5+5x^4-4x^2+4-\frac{4}{1+x^2}.
  • Een primitieve functie van f is dan \frac{1}{7}x^7-\frac{4}{6}x^6-x^5-\frac{4}{3}x^3+4x-4\text{Bgtan }(x).
  • Bijgevolg is \int_0^1f(x) dx= \frac{22}{7}-\pi
  • Uit het tweede puntje volgt dan:
  • Narekenen op rekentoestel geeft \frac{22}{7}=3,142857142857,... en \pi=3,14159265....