Rangeerproblemen

Een man beschikt over een klein roeibootje. Hij moet een wolf, een schaap en
een kool naar de andere oever overbrengen. In het bootje is maar plaats voor
de man en ofwel de wolf, ofwel het schaap, ofwel de kool. Hij mag echter de
wolf en het schaap nooit alleen laten (je kan wel raden wat er dan gebeurt)
en ook het schaap mag hij niet alleen met de kool achterlaten. Hoe legt hij
het aan boord?

Over de oplossing en aanverwante problemen kan je meer lezen in volgend artikel.

Oneindige afdaling

Een bewijs door  oneindige afdaling  is een manier van bewijzen die kan worden toegepast bij aftelbare welgeordende verzamelingen, meestal de natuurlijke getallen. Men bewijst het niet bestaan van een element uit een verzameling met een bepaalde eigenschap, door aan te tonen dat als er zo een element zou bestaan, er ook een kleiner element moet bestaan met die eigenschap. Zo ontstaat een oneindige keten van elementen kleiner dan het veronderstelde element, terwijl er maar eindig veel van dergelijke elementen zijn. Fermat was één van de eersten die deze methode veelvuldig gebruikte.

Een voorbeeld:

Vind alle oplossingen in positieve gehele getallen van x^2+y^2=3(z^2+w^2)

Bewijs:

Stel (x,y,z,w) een oplossing van de gegeven vergelijking waarbij x minimaal is. Omdat 3 een deler is van het rechterlid , moet 3 ook een deler zijn van x^2+y^2. Omdat kwadraten 0 of 1 modulo 3 zijn, kan x^2+y^2 alleen maar deelbaar zijn door 3 als x en y zelf deelbaar zijn door 3. Dus x=3x' en y=3y'. Ingevuld geeft dit 3(x'^2+y'^2)=z^2+w^2. Analoog vinden we dat z=3z' en w=3w', waardoor x'^2+y'^2=3(z'^2+w'^2). Dus is (x',y',z',w') ook een oplossing van de gegeven vergelijking met x'<x. Dit levert een tegenspraak en dus heeft de vergelijking geen oplossingen in de verzameling van de positieve gehele getallen.

Erlanger Programm van Felix Klein

Felix Christian Klein (Düsseldorf, 25 april 1849Göttingen, 22 juni 1925) was een Duits wiskundige. Klein was hoogleraar aan de universiteiten van Erlangen, München, Leipzig en uiteindelijk Göttingen waar hij wiskunde doceerde. Zijn hoofdonderwerpen waren niet-euclidische meetkunde, groepentheorie en functietheorie. Naar hem is onder andere de fles van Klein genoemd. In 1912 kreeg hij de Copley Medal.

In 1872 hield hij zijn inaugurale rede aan de universiteit van Erlangen, beroemd geworden onder de naam Erlanger programm. Klein vond het noodzakelijk meetkunde te onderwijzen vanuit het groeptheoretisch standpunt. Dit betekent niet dat meetkunde moet vervangen worden door groepenleer, maar wel dat de eenvoudige begrippen en eigenschappen uit die theorie zouden gebruikt worden als verhelderende en ordenende elementen bij de opbouw van de meetkunde. Vanaf begin 20 ste eeuw werd algemeen aanvaard een meetkunde te definiëren als een invariantentheorie van een bepaalde transformatiegroep. In feite zegt Klein dat om aan meetkunde te doen twee dingen nodig zijn: een verzameling punten en een transformatiegroep. Meetkunde is de studie van de invarianten onder deze transformaties. Wanneer we iets aan de verzameling, of aan de groep veranderen hebben we een andere meetkunde. Alles wat niet invariant is is in feite onbelangrijk.