Kettingwortels

Een uitdrukking zoals

    \[x=\sqrt{a+\sqrt{a+\sqrt{a+\sqrt{a+...}}}}\]

wordt een oneindige kettingwortel genoemd.

Als we beide leden kwadrateren komt er: 

    \[x^2=a+\sqrt{a+\sqrt{a+\sqrt{a+\sqrt{a+...}}}}\]

of nóg x^2=a+x. De positieve oplossing van deze vierkantsvergelijking is x=\frac{1}{2}(1+\sqrt{1+4a})

Stel hierin bijvoorbeeld a=1, dan bekomen we:

    \[\frac{1}{2}(1+\sqrt{5})=\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+...}}}}\]

In het bijzonder ontstaat er een natuurlijk getal indien 1+4a een volkomen kwadraat is. Een paar voorbeelden: 

2=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...}}}}

3=\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6+...}}}}

4=\sqrt{12+\sqrt{12+\sqrt{12+\sqrt{12+...}}}}

 

Julia fractaal

Neem de functie f(x)=x^2+c en neem een willekeurige startwaarde x_1. Bereken de functiewaarde van x_0 en noem die x_1. Bereken vervolgens de functiewaarde van x_1 en noem die x_2. We verkrijgen zo een rij getallen

    \[x_{n+1}=f(x_n)\]

Gaston Julia ( 1893-1978) publiceerde in 1919 zijn boek Mémoire sur l’iteration des fonctions rationelles waarin hij het iteratief gedrag van deze functie(s) onderzocht.

We bestuderen nu

de relatie z_{n+1}=f(z_n) in het complexe vlak. Als de rij z_0,z_1,z_2,... begrensd is, dan gaan we de startwaarde z_0 plotten. De verzameling punten in het complexe vlak waarvoor de rij begrensd is noemen we de Julia verzameling horend bij c.

Er zijn op basis hiervan twee verzamelingen te construeren: de verzameling van de punten z0 waarvoor het iteratieve proces begrensd is (de Julia-set bij C) en  de verzameling van de punten z0 waarvoor de verzameling niet-begrensd is. De rand van het “begrensdheidsgebied” wordt een “fractaal” genoemd, de Julia-fractaal bij c.

Dit levert zeer mooie figuren :

Of de san Marco fractaal en het dendriet…

 

Lhuilier

De studie van veelvlakken kan teruggevoerd worden naar de piramiden van het Oude Egypte. Maar het waren voornamelijk de Grieken die geïnteresseerd waren in de wiskundige eigenschappen van regelmatige veelvlakken. Zij ontdekten  de 5 platonische lichamen, waarvan een volledige beschrijving werd gegeven door Theiatetos ( 400 BC).

In 1750 formuleerde Euler(1707-1783) een formule die een verband legt tussen het aantal zijvlakken, het aantal hoekpunten  en het aantal ribben van een veelvlak: Z – R + H = 2. We zeggen dat deze veelvlakken Eulerkarakteristiek 2 hebben.

Maar Euler zag één punt over het hoofd, namelijk de kwestie van convexiteit. De veelvlakken die Euler en de Grieken bestudeerden, waren allemaal convex zonder dat dit expliciet werd verondersteld. In 1619 beschreef Kepler een regelmatig niet-convex veelvlak, namelijk de stella octangula. 

De kwestie van de convexiteit heeft dan ook geleid tot uitzonderingen op de formule van Euler. In 1811 vond Lhuilier( 1750-1840), een Zwitserse wiskundige, 3 soorten veelvlakken waarvoor de formule niet meer klopte. Deze soorten veelvlakken waren echter convex. 

Het was uiteindelijk Poincaré die de formule van Euler veralgemeende tot : Z – R + H = 2 – 2g, waar bij g het aantal gaten in het veelvlak is.